Abstract
Current state-of-the-art dialogue systems heavily rely on extensive training datasets. However, challenges arise in domains where domain-specific training datasets are insufficient or entirely absent. To tackle this challenge, we propose a novel data Augmentation framework for Multi-Domain Dialogue Generation, referred to as AMD\(^2\)G. The AMD\(^2\)G framework consists of a data augmentation process and a two-stage training approach: domain-agnostic training and domain adaptation training. We posit that domain corpora are a blend of domain-agnostic and domain-specific features, with certain representation patterns shared among diverse domains. Domain-agnostic training aims to enable models to learn these common expressive patterns. To construct domain-agnostic dialogue corpora, we employ a de-domaining data processing technique used to remove domain-specific features. By mitigating the effects of domain-specific features, the model trained on the de-domained corpora can effectively learn common expression patterns in different domains. Subsequently, we adapt the learned domain-agnostic features to the target domain through domain adaptation training. We conduct experiments on Chinese dialogue datasets from five different domains and show that AMD\(^2\)G achieves superior performance compared to both direct training on the target domain corpus and collective training on all five domain corpora. Our work underscores AMD\(^2\)G as a viable alternative solution for low-resource multi-domain dialogue generation. Code and data associated with our work are available on GitHub repository (https://github.com/misonsky/Amdg).
Y. Liu and E. Nie—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adiwardana, D., et al.: Towards a human-like open-domain chatbot. arXiv preprint arXiv:2001.09977 (2020)
Bang, N., Lee, J., Koo, M.W.: Task-optimized adapters for an end-to-end task-oriented dialogue system. arXiv preprint arXiv:2305.02468 (2023)
Bang, Y., et al.: A multitask, multilingual, multimodal evaluation of chatGPT on reasoning, hallucination, and interactivity. arXiv preprint arXiv:2302.04023 (2023)
Chen, X., Cardie, C.: Multinomial adversarial networks for multi-domain text classification. arXiv preprint arXiv:1802.05694 (2018)
Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. In: NIPS 2014 Workshop on Deep Learning, December 2014 (2014)
Hathaliya, J.J., Tanwar, S.: An exhaustive survey on security and privacy issues in healthcare 4.0. Comput. Commun. 153, 311–335 (2020)
He, Z., He, Y., Wu, Q., Chen, J.: Fg2seq: effectively encoding knowledge for end-to-end task-oriented dialog. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8029–8033. IEEE (2020)
Ji, Z., et al.: Survey of hallucination in natural language generation. ACM Comput. Surv. 55(12), 1–38 (2023)
Kim, D., et al.: Bidirectional domain mixup for domain adaptive semantic segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 1114–1123 (2023)
Lewis, M., et al.: Bart: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. pp. 7871–7880 (2020)
Li, J., Galley, M., Brockett, C., Gao, J., Dolan, W.B.: A diversity-promoting objective function for neural conversation models. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 110–119 (2016)
Li, J., Monroe, W., Shi, T., Jean, S., Ritter, A., Jurafsky, D.: Adversarial learning for neural dialogue generation. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 2157–2169 (2017)
Li, S., et al.: Enhancing dialogue generation with conversational concept flows. In: Findings of the Association for Computational Linguistics: EACL 2023, pp. 1484–1495 (2023)
Li, X., Li, M., Wang, Y., Ren, C.X., Guo, X.: Adaptive texture filtering for single-domain generalized segmentation. arXiv preprint arXiv:2303.02943 (2023)
Lin, C.Y.: Rouge: a package for automatic evaluation of summaries. In: Text Summarization Branches Out, pp. 74–81 (2004)
Lin, P., Wang, J., Schütze, H., Li, W.: Modeling content-emotion duality via disentanglement for empathetic conversation. arXiv preprint arXiv:2209.12495 (2022)
Lin, Z., et al.: Bitod: a bilingual multi-domain dataset for task-oriented dialogue modeling. arXiv preprint arXiv:2106.02787 (2021)
Liu, W., Tang, J., Cheng, Y., Li, W., Zheng, Y., Liang, X.: MEDDG: an entity-centric medical consultation dataset for entity-aware medical dialogue generation (2022)
Liu, Y., Feng, S., Wang, D., Schütze, H., Zhang, Y.: PVGRU: generating diverse and relevant dialogue responses via pseudo-variational mechanism. arXiv preprint arXiv:2212.09086 (2022)
Liu, Y., Feng, S., Wang, D., Zhang, Y.: MulZDG: multilingual code-switching framework for zero-shot dialogue generation. In: Proceedings of the 29th International Conference on Computational Linguistics. pp. 648–659 (2022)
Liu, Y., Feng, S., Wang, D., Zhang, Y., Schütze, H.: Evaluate what you can’t evaluate: unassessable generated responses quality. arXiv preprint arXiv:2305.14658 (2023)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (2017)
Ma, X., Zhang, P., Zhao, F.: Domain-specific attention with distributional signatures for multi-domain end-to-end task-oriented dialogue. In: Findings of the Association for Computational Linguistics: ACL 2023, pp. 3109–3122 (2023)
Madotto, A., Wu, C.S., Fung, P.: Mem2seq: effectively incorporating knowledge bases into end-to-end task-oriented dialog systems. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1468–1478 (2018)
Nie, E., Liang, S., Schmid, H., Schütze, H.: Cross-lingual retrieval augmented prompt for low-resource languages. arXiv preprint arXiv:2212.09651 (2022)
OpenAI: Gpt-4 technical report (2023)
Ouyang, L., et al.: Training language models to follow instructions with human feedback. Adv. Neural. Inf. Process. Syst. 35, 27730–27744 (2022)
Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the 40th annual meeting of the Association for Computational Linguistics, pp. 311–318 (2002)
Peng, S., Huang, X., Lin, Z., Ji, F., Chen, H., Zhang, Y.: Teacher-student framework enhanced multi-domain dialogue generation. arXiv preprint arXiv:1908.07137 (2019)
Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp. 1532–1543 (2014)
Qin, L., Liu, Y., Che, W., Wen, H., Li, Y., Liu, T.: Entity-consistent end-to-end task-oriented dialogue system with kb retriever. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 133–142 (2019)
Qin, L., Xu, X., Che, W., Zhang, Y., Liu, T.: Dynamic fusion network for multi-domain end-to-end task-oriented dialog. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 6344–6354 (2020)
Radford, A., et al.: Language models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)
Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21, 1–67 (2020)
Ren, F., et al.: TechKG: a large-scale Chinese technology-oriented knowledge graph. arXiv preprint arXiv:1812.06722 (2018)
Ren, F., Ning, A., Qi, M., Lei, H.: TechGPT: technology-oriented generative pretrained transformer. https://github.com/neukg/TechGPT (2023)
Roller, S., et al.: Recipes for building an open-domain chatbot. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp. 300–325 (2021)
Sedgwick, P.: Pearson’s correlation coefficient. BMJ 345 (2012)
Serban, I., Sordoni, A., Bengio, Y., Courville, A., Pineau, J.: Building end-to-end dialogue systems using generative hierarchical neural network models. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)
Shao, Y., et al.: CPT: a pre-trained unbalanced transformer for both Chinese language understanding and generation. arXiv preprint arXiv:2109.05729 (2021)
Sukhbaatar, S., Weston, J., Fergus, R., et al.: End-to-end memory networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Wen, H., Liu, Y., Che, W., Qin, L., Liu, T.: Sequence-to-sequence learning for task-oriented dialogue with dialogue state representation. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 3781–3792 (2018)
Wu, C.S., Madotto, A., Hosseini-Asl, E., Xiong, C., Socher, R., Fung, P.: Transferable multi-domain state generator for task-oriented dialogue systems. arXiv preprint arXiv:1905.08743 (2019)
Wu, C.S., Socher, R., Xiong, C.: Global-to-local memory pointer networks for task-oriented dialogue. arXiv preprint arXiv:1901.04713 (2019)
Wu, H., Zhang, Y., Jin, X., Xue, Y., Wang, Z.: Shared-private LSTM for multi-domain text classification. In: Tang, J., Kan, M.-Y., Zhao, D., Li, S., Zan, H. (eds.) NLPCC 2019. LNCS (LNAI), vol. 11839, pp. 116–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32236-6_10
Wu, H., Xu, K., Song, L., Jin, L., Zhang, H., Song, L.: Domain-adaptive pretraining methods for dialogue understanding. arXiv preprint arXiv:2105.13665 (2021)
Xie, T., et al.: UnifiedsKG: unifying and multi-tasking structured knowledge grounding with text-to-text language models. In: Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 602–631 (2022)
Xu, J., Ren, X., Lin, J., Sun, X.: Diversity-promoting GAN: a cross-entropy based generative adversarial network for diversified text generation. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 3940–3949 (2018)
Yang, A., Liu, K., Liu, J., Lyu, Y., Li, S.: Adaptations of rouge and bleu to better evaluate machine reading comprehension task. In: Proceedings of the Workshop on Machine Reading for Question Answering, pp. 98–104 (2018)
Yang, L., Li, J., Li, S., Shinozaki, T.: Multi-domain dialogue state tracking with disentangled domain-slot attention. In: Findings of the Association for Computational Linguistics: ACL 2023, pp. 4928–4938 (2023)
Yunjie, J., et al.: Belle: be everyone’s large language model engine (2023)
Zhang, Z., Li, J., Zhu, P., Zhao, H., Liu, G.: Modeling multi-turn conversation with deep utterance aggregation (2018)
Zhong, V., Xiong, C., Socher, R.: Global-locally self-attentive encoder for dialogue state tracking. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1458–1467 (2018)
Zhou, H., Zheng, C., Huang, K., Huang, M., Zhu, X.: KDCONV: a Chinese multi-domain dialogue dataset towards multi-turn knowledge-driven conversation (2020)
Acknowledgement
We would like to thank reviewers for their constructive comments. The project is supported by the National Natural Science Foundation of China (62172086, 62272092) and DFG (grant SCHU 2246/14-1). The project is also supported by China Scholarship Council.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, Y. et al. (2024). A Unified Data Augmentation Framework for Low-Resource Multi-domain Dialogue Generation. In: Bifet, A., Davis, J., Krilavičius, T., Kull, M., Ntoutsi, E., Žliobaitė, I. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2024. Lecture Notes in Computer Science(), vol 14942. Springer, Cham. https://doi.org/10.1007/978-3-031-70344-7_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-70344-7_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70343-0
Online ISBN: 978-3-031-70344-7
eBook Packages: Computer ScienceComputer Science (R0)