Abstract
Engineering diagrams provide rich source of information and are widely used across different industries. Recent years have seen growing research interest in developing solutions for processing and analysing these diagrams using wide range of image-processing and computer vision techniques. In this paper, we first, present a new multiclass imbalanced dataset of symbols extracted from Piping and Instrumentation Diagrams (P&IDs). The dataset contains 7,728 instances representing 48 different types of engineering symbols and it is considered the first of its kind in the research community. Second, we present a new method for handling multiclass imbalance classification based on class decomposition by means of unsupervised machine learning methods. Experiments using Convolutional Neural Networks showed that using class decomposition significantly improves the classification performance that can be achieved, without causing information loss, as it is the case with other class imbalance data sampling approaches.
Supported by DNV.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arroyo, E., Hoernicke, M., Rodríguez, P., Fay, A.: Automatic derivation of qualitative plant simulation models from legacy piping and instrumentation diagrams. Comput. Chem. Eng. 92, 112–132 (2016)
Banerjee, P., Choudhary, S., Das, S., Majumdar, H., Roy, R., Chaudhuri, B.B.: Automatic hyperlinking of engineering drawing documents. In: 2016 12th IAPR Workshop on Document Analysis Systems (DAS), pp. 102–107 (2016). https://doi.org/10.1109/DAS.2016.76
Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018). https://doi.org/10.1016/j.neunet.2018.07.011
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Int. Res. 16(1), 321–357 (2002)
Datta, R., Mandal, P.D.S., Chanda, B.: Detection and identification of logic gates from document images using mathematical morphology. In: 2015 Fifth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG), pp. 1–4 (2015). https://doi.org/10.1109/NCVPRIPG.2015.7490040
Elyan, E., Moreno-García, C.F., Jayne, C.: Symbols classification in engineering drawings. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2018). https://doi.org/10.1109/IJCNN.2018.8489087
Elyan, E., Jamieson, L., Ali-Gombe, A.: Deep learning for symbols detection and classification in engineering drawings. Neural Netw. 129, 91–102 (2020). https://doi.org/10.1016/j.neunet.2020.05.025
Elyan, E., Moreno-García, C.F., Jayne, C.: CDSMOTE: class decomposition and synthetic minority class oversampling technique for imbalanced-data classification. Neural Comput. Appl. (2020). https://doi.org/10.1007/s00521-020-05130-z
Elyan, E., Moreno-García, C.F., Johnston, P.: Symbols in engineering drawings (SiED): an imbalanced dataset benchmarked by convolutional neural networks. In: Iliadis, L., Angelov, P.P., Jayne, C., Pimenidis, E. (eds.) EANN 2020. PINNS, vol. 2, pp. 215–224. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48791-1_16
Fajardo, V.A., et al.: On oversampling imbalanced data with deep conditional generative models. Expert Syst. Appl. 169, 114463 (2021). https://doi.org/10.1016/j.eswa.2020.114463
Gellaboina, M.K., Venkoparao, V.G.: Graphic symbol recognition using auto associative neural network model. In: 2009 Seventh International Conference on Advances in Pattern Recognition, pp. 297–301 (2009). https://doi.org/10.1109/ICAPR.2009.45
Gupta, G., Swati, Sharma, M., Vig, L.: Information extraction from hand-marked industrial inspection sheets. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 6, pp. 33–38 (2017). https://doi.org/10.1109/ICDAR.2017.346
Jamieson, L., Moreno-García, C.F., Elyan, E.: Deep learning for text detection and recognition in complex engineering diagrams. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–7 (2020). https://doi.org/10.1109/IJCNN48605.2020.9207127
Johnson, J.M., Khoshgoftaar, T.M.: Survey on deep learning with class imbalance. J. Big Data 6(1), 27 (2019)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015). https://doi.org/10.1109/CVPR.2015.7298965
Mani, S., Haddad, M.A., Constantini, D., Douhard, W., Li, Q., Poirier, L.: Automatic digitization of engineering diagrams using deep learning and graph search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 1–7 (2020)
Moreno-García, C.F., Elyan, E.: Digitisation of assets from the oil gas industry: challenges and opportunities. In: 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW), vol. 7, pp. 2–5 (2019). https://doi.org/10.1109/ICDARW.2019.60122
Moreno-García, C.F., Elyan, E., Jayne, C.: Heuristics-based detection to improve text/graphics segmentation in complex engineering drawings. In: Engineering Applications of Neural Networks, vol. CCIS 744, pp. 87–98 (2017)
Moreno-García, C.F., Elyan, E., Jayne, C.: New trends on digitisation of complex engineering drawings. Neural Comput. Appl. (2018). https://doi.org/10.1007/s00521-018-3583-1
Moreno-García, C.F., Johnston, P., Garkuwa, B.: Pixel-based layer segmentation of complex engineering drawings using convolutional neural networks. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–7 (2020). https://doi.org/10.1109/IJCNN48605.2020.9207479
Nurminen, J.K., Rainio, K., Numminen, J.-P., Syrjänen, T., Paganus, N., Honkoila, K.: Object detection in design diagrams with machine learning. In: Burduk, R., Kurzynski, M., Wozniak, M. (eds.) CORES 2019. AISC, vol. 977, pp. 27–36. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-19738-4_4
Rahul, R., Paliwal, S., Sharma, M., Vig, L.: Automatic information extraction from piping and instrumentation diagrams. CoRR (2019). http://arxiv.org/abs/1901.11383
Ravagli, J., Ziran, Z., Marinai, S.: Text recognition and classification in floor plan images. In: 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW), vol. 1, pp. 1–6 (2019). https://doi.org/10.1109/ICDARW.2019.00006
Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. CoRR (2018). http://arxiv.org/abs/1804.02767
Rica, E., Alvarez, S., Moreno-García, C.F., Serratosa, F.: Zero-error digitisation and contextualisation of piping and instrumentation diagrams using node classification and sub-graph search. In: Krzyzak, A., Suen, C.Y., Torsello, A., Nobile, N. (eds.) S+SSPR 2022. LNCS, vol. 13813, pp. 274–282. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-23028-8_28
Sinha, A., Bayer, J., Bukhari, S.S.: Table localization and field value extraction in piping and instrumentation diagram images. In: 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW), vol. 1, pp. 26–31 (2019). https://doi.org/10.1109/ICDARW.2019.00010
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014). http://jmlr.org/papers/v15/srivastava14a.html
Tan, W.C., Chen, I.M., Tan, H.K.: Automated identification of components in raster piping and instrumentation diagram with minimal pre-processing. In: 2016 IEEE International Conference on Automation Science and Engineering (CASE), pp. 1301–1306 (2016). https://doi.org/10.1109/COASE.2016.7743558
Toral, L., Moreno-García, C.F., Elyan, E., Memon, S.: A deep learning digitisation framework to mark up corrosion circuits in piping and instrumentation diagrams. In: Barney Smith, E.H., Pal, U. (eds.) ICDAR 2021. LNCS, vol. 12917, pp. 268–276. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86159-9_18
Vuttipittayamongkol, P., Elyan, E.: Neighbourhood-based undersampling approach for handling imbalanced and overlapped data. Inf. Sci. 509, 47–70 (2020). https://doi.org/10.1016/j.ins.2019.08.062. http://www.sciencedirect.com/science/article/pii/S0020025519308114
Wang, S., Liu, W., Wu, J., Cao, L., Meng, Q., Kennedy, P.J.: Training deep neural networks on imbalanced data sets. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 4368–4374 (2016). https://doi.org/10.1109/IJCNN.2016.7727770
Wang, S., Yao, X.: Multiclass imbalance problems: analysis and potential solutions. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(4), 1119–1130 (2012). https://doi.org/10.1109/TSMCB.2012.2187280
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jamieson, L., Moreno-García, C.F., Elyan, E. (2024). A Multiclass Imbalanced Dataset Classification of Symbols from Piping and Instrumentation Diagrams. In: Barney Smith, E.H., Liwicki, M., Peng, L. (eds) Document Analysis and Recognition - ICDAR 2024. ICDAR 2024. Lecture Notes in Computer Science, vol 14804. Springer, Cham. https://doi.org/10.1007/978-3-031-70533-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-70533-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70532-8
Online ISBN: 978-3-031-70533-5
eBook Packages: Computer ScienceComputer Science (R0)