Abstract
Document dewarping has made great progress in recent years, however it usually requires huge document pairs with pixel-level annotation to learn a mapping function. Although photographed document images are easy to obtain, the pixel-level annotation between warped and flat images is time-consuming and almost impossible for large-scale datasets. To overcome this issue, we propose to register photographed documents with corresponding flat counterparts, obtaining the auto-annotation of pixel-level mapping labels. Due to the severe deformation in the real photographed documents, we introduce a coarse-to-fine registration pipeline to learn global-scale transformation and local details alignment respectively. In addition, the lack of registration labels motivates us to tailor a teacher-student dual branch under semi-supervised training, where the model is initialized on synthetic documents with labels. Furthermore, we contribute a large-scale dataset containing 12,500 triplets of synthetic-real-flat documents. Extensive experiments demonstrate the effectiveness of our proposed registration method. Specifically, trained by our registered pixel-level documents, the dewarping model can obtain comparable performance with SOTAs trained by almost 100\(\times \) scale of samples, showing the high quality of our registration results. Our dataset and code are available at https://github.com/hanquansanren/DIRD.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Xie, G.-W., Yin, F., Zhang, X.-Y., Liu, C.-L.: Document dewarping with control points. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12821, pp. 466–480. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86549-8_30
Ma, K., Shu, Z., Bai, X., Wang, J., Samaras, D.: DocUNet: document image unwarping via a stacked U-Net. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4700–4709 (2018)
Xie, G., Yin, F., Zhang, X., Liu, C.: Dewarping document image by displacement flow estimation with fully convolutional network. In: International Workshop on Document Analysis Systems (DAS), pp. 131–144 (2020)
Li, J., Wang, Q.-F., Zhang, R., Huang, K.: Adversarial rectification network for scene text regularization. In: Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H., King, I. (eds.) ICONIP 2020. LNCS, vol. 12533, pp. 152–163. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63833-7_13
Das, S., Ma, K., Shu, Z., Samaras, D., Shilkrot, R.: DewarpNet: single-image document unwarping with stacked 3D and 2D regression networks. In: International Conference on Computer Vision (ICCV), pp. 131–140 (2019)
Li, P., Quan, W., Guo, J., Yan, D.-M.: Layout-aware single-image document flattening. ACM Trans. Graph. (TOG) 43(1) (2023)
Ma, K., Das, S., Shu, Z., Samaras, D.: Learning from documents in the wild to improve document unwarping. In: ACM Special Interest Group on Computer Graphics (SIGGRAPH), Conference Proceedings, pp. 1–9 (2022)
Verhoeven, F., Magne, T., Sorkine-Hornung, O.: UVDoc: neural grid-based document unwarping. In: ACM SIGGRAPH Conference and Exhibition on Computer Graphics and Interactive Techniques in Asia (SIGGRAPH ASIA) (2023)
Xue, C., Tian, Z., Zhan, F., Lu, S., Bai, S.: Fourier document restoration for robust document dewarping and recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4573–4582 (2022)
Zhu, S., Liu, X.: PMatch: paired masked image modeling for dense geometric matching, March 2023. arXiv:2303.17342 [cs]
Kim, B., Kim, D.H., Park, S.H., Kim, J., Lee, J.-G., Ye, J.C.: CycleMorph: cycle consistent unsupervised deformable image registration. Med. Image Anal. 71, 102036 (2021)
Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)
Ma, J., Jiang, X., Fan, A., Jiang, J., Yan, J.: Image matching from handcrafted to deep features: a survey. Int. J. Comput. Vis. 129, 23–79 (2021)
Zheng, D., Wu, X.-M., Liu, Z., Meng, J., Zheng, W.-S.: DiffuVolume: diffusion model for volume based stereo matching, August 2023. arXiv:2308.15989 [cs]
Chang, J., Yu, J., Zhang, T.: Structured epipolar matcher for local feature matching, April 2023. arXiv:2303.16646 [cs]. http://arxiv.org/abs/2303.16646
Melekhov, I., Tiulpin, A., Sattler, T., Pollefeys, M., Rahtu, E., Kannala, J.: DGC-Net: dense geometric correspondence network, October 2018. arXiv:1810.08393 [cs]
Jeong, J., Cai, H., Garrepalli, R., Porikli, F.: DistractFlow: improving optical flow estimation via realistic distractions and pseudo-labeling, March 2023. arXiv:2303.14078 [cs]
Wu, G., et al.: AccFlow: backward accumulation for long-range optical flow, August 2023. arXiv:2308.13133 [cs]
Kim, S., Min, J., Cho, M.: TransforMatcher: match-to-match attention for semantic correspondence. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8697–8707 (2022)
Chen, J., Frey, E.C., He, Y., Segars, W.P., Li, Y., Du, Y.: TransMorph: transformer for unsupervised medical image registration. Med. Image Anal. 82, 102615 (2022)
Zhang, J., Chen, B., Cheng, H., Guo, F., Ding, K., Jin, L.: DocAligner: annotating real-world photographic document images by simply taking pictures, June 2023. arXiv:2306.05749 [cs]
Burie, J.-C., et al.: ICDAR2015 competition on smartphone document capture and OCR (SmartDoc). In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 1161–1165. IEEE (2015)
Li, X., Zhang, B., Liao, J., Sander, P.V.: Document rectification and illumination correction using a patch-based CNN. ACM Trans. Graph. (TOG) 38(6), 1–11 (2019)
Hertlein, F., Naumann, A., Philipp, P.: Inv3D: a high-resolution 3D invoice dataset for template-guided single-image document unwarping. Int. J. Doc. Anal. Recogn. (IJDAR), 1–12 (2023)
Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems (NIPS), vol. 30 (2017)
Chen, Y., Mancini, M., Zhu, X., Akata, Z.: Semi-supervised and unsupervised deep visual learning: a survey, August 2022. arXiv:2208.11296 [cs]
Borgwardt, K.M., Gretton, A., Rasch, M.J., Kriegel, H.-P., Schölkopf, B., Smola, A.J.: Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics 22(14), e49–e57 (2006)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)
Feng, H., Wang, Y., Zhou, W., Deng, J., Li, H.: DocTr: document image transformer for geometric unwarping and illumination correction. In: Proceedings of the ACM International Conference on Multimedia (MM), pp. 273–281 (2021)
Gardner, M.-A., et al.: Learning to predict indoor illumination from a single image. ACM Trans. Graph. (TOG) 36(6), 1–14 (2017)
Li, Z., Chen, X., Pun, C.-M., Cun, X.: High-resolution document shadow removal via a large-scale real-world dataset and a frequency-aware shadow erasing net, September 2023. arXiv:2308.14221 [cs]
Smith, J., et al.: The Lambertian assumption and Landsat data. Photogramm. Eng. Remote. Sens. 46(9), 1183–1189 (1980)
You, S., Matsushita, Y., Sinha, S., Bou, Y., Ikeuchi, K.: Multiview rectification of folded documents. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 40(2), 505–511 (2017)
Wang, Z., Simoncelli, E., Bovik, A.: Multiscale structural similarity for image quality assessment. In: Asilomar Conference on Signals, Systems and Computers (CSSC), pp. 1398–1402 (2003)
Levenshtein, V.I., et al.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Phys. Dokl. 10(8), 707–710 (1966)
Edstedt, J., Athanasiadis, I., Wadenbäck, M., Felsberg, M.: DKM: dense kernelized feature matching for geometry estimation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17 765–17 775 (2023)
Acknowledgement
The work was partially supported by the following: National Natural Science Foundation of China under no. 92370119 and No. 62276258, and No. 62376113; Jiangsu Science and Technology Programme (Natural Science Foundation of Jiangsu Province) under no. BE2020006-4.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, W., Wang, Q., Huang, K., Gu, X., Guo, F. (2024). Coarse-to-Fine Document Image Registration for Dewarping. In: Barney Smith, E.H., Liwicki, M., Peng, L. (eds) Document Analysis and Recognition - ICDAR 2024. ICDAR 2024. Lecture Notes in Computer Science, vol 14807. Springer, Cham. https://doi.org/10.1007/978-3-031-70546-5_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-70546-5_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70545-8
Online ISBN: 978-3-031-70546-5
eBook Packages: Computer ScienceComputer Science (R0)