Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Coarse-to-Fine Document Image Registration for Dewarping

  • Conference paper
  • First Online:
Document Analysis and Recognition - ICDAR 2024 (ICDAR 2024)

Abstract

Document dewarping has made great progress in recent years, however it usually requires huge document pairs with pixel-level annotation to learn a mapping function. Although photographed document images are easy to obtain, the pixel-level annotation between warped and flat images is time-consuming and almost impossible for large-scale datasets. To overcome this issue, we propose to register photographed documents with corresponding flat counterparts, obtaining the auto-annotation of pixel-level mapping labels. Due to the severe deformation in the real photographed documents, we introduce a coarse-to-fine registration pipeline to learn global-scale transformation and local details alignment respectively. In addition, the lack of registration labels motivates us to tailor a teacher-student dual branch under semi-supervised training, where the model is initialized on synthetic documents with labels. Furthermore, we contribute a large-scale dataset containing 12,500 triplets of synthetic-real-flat documents. Extensive experiments demonstrate the effectiveness of our proposed registration method. Specifically, trained by our registered pixel-level documents, the dewarping model can obtain comparable performance with SOTAs trained by almost 100\(\times \) scale of samples, showing the high quality of our registration results. Our dataset and code are available at https://github.com/hanquansanren/DIRD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.blender.org/.

References

  1. Xie, G.-W., Yin, F., Zhang, X.-Y., Liu, C.-L.: Document dewarping with control points. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12821, pp. 466–480. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86549-8_30

    Chapter  Google Scholar 

  2. Ma, K., Shu, Z., Bai, X., Wang, J., Samaras, D.: DocUNet: document image unwarping via a stacked U-Net. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4700–4709 (2018)

    Google Scholar 

  3. Xie, G., Yin, F., Zhang, X., Liu, C.: Dewarping document image by displacement flow estimation with fully convolutional network. In: International Workshop on Document Analysis Systems (DAS), pp. 131–144 (2020)

    Google Scholar 

  4. Li, J., Wang, Q.-F., Zhang, R., Huang, K.: Adversarial rectification network for scene text regularization. In: Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H., King, I. (eds.) ICONIP 2020. LNCS, vol. 12533, pp. 152–163. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63833-7_13

    Chapter  Google Scholar 

  5. Das, S., Ma, K., Shu, Z., Samaras, D., Shilkrot, R.: DewarpNet: single-image document unwarping with stacked 3D and 2D regression networks. In: International Conference on Computer Vision (ICCV), pp. 131–140 (2019)

    Google Scholar 

  6. Li, P., Quan, W., Guo, J., Yan, D.-M.: Layout-aware single-image document flattening. ACM Trans. Graph. (TOG) 43(1) (2023)

    Google Scholar 

  7. Ma, K., Das, S., Shu, Z., Samaras, D.: Learning from documents in the wild to improve document unwarping. In: ACM Special Interest Group on Computer Graphics (SIGGRAPH), Conference Proceedings, pp. 1–9 (2022)

    Google Scholar 

  8. Verhoeven, F., Magne, T., Sorkine-Hornung, O.: UVDoc: neural grid-based document unwarping. In: ACM SIGGRAPH Conference and Exhibition on Computer Graphics and Interactive Techniques in Asia (SIGGRAPH ASIA) (2023)

    Google Scholar 

  9. Xue, C., Tian, Z., Zhan, F., Lu, S., Bai, S.: Fourier document restoration for robust document dewarping and recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4573–4582 (2022)

    Google Scholar 

  10. Zhu, S., Liu, X.: PMatch: paired masked image modeling for dense geometric matching, March 2023. arXiv:2303.17342 [cs]

  11. Kim, B., Kim, D.H., Park, S.H., Kim, J., Lee, J.-G., Ye, J.C.: CycleMorph: cycle consistent unsupervised deformable image registration. Med. Image Anal. 71, 102036 (2021)

    Article  Google Scholar 

  12. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  13. Ma, J., Jiang, X., Fan, A., Jiang, J., Yan, J.: Image matching from handcrafted to deep features: a survey. Int. J. Comput. Vis. 129, 23–79 (2021)

    Article  MathSciNet  Google Scholar 

  14. Zheng, D., Wu, X.-M., Liu, Z., Meng, J., Zheng, W.-S.: DiffuVolume: diffusion model for volume based stereo matching, August 2023. arXiv:2308.15989 [cs]

  15. Chang, J., Yu, J., Zhang, T.: Structured epipolar matcher for local feature matching, April 2023. arXiv:2303.16646 [cs]. http://arxiv.org/abs/2303.16646

  16. Melekhov, I., Tiulpin, A., Sattler, T., Pollefeys, M., Rahtu, E., Kannala, J.: DGC-Net: dense geometric correspondence network, October 2018. arXiv:1810.08393 [cs]

  17. Jeong, J., Cai, H., Garrepalli, R., Porikli, F.: DistractFlow: improving optical flow estimation via realistic distractions and pseudo-labeling, March 2023. arXiv:2303.14078 [cs]

  18. Wu, G., et al.: AccFlow: backward accumulation for long-range optical flow, August 2023. arXiv:2308.13133 [cs]

  19. Kim, S., Min, J., Cho, M.: TransforMatcher: match-to-match attention for semantic correspondence. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8697–8707 (2022)

    Google Scholar 

  20. Chen, J., Frey, E.C., He, Y., Segars, W.P., Li, Y., Du, Y.: TransMorph: transformer for unsupervised medical image registration. Med. Image Anal. 82, 102615 (2022)

    Article  Google Scholar 

  21. Zhang, J., Chen, B., Cheng, H., Guo, F., Ding, K., Jin, L.: DocAligner: annotating real-world photographic document images by simply taking pictures, June 2023. arXiv:2306.05749 [cs]

  22. Burie, J.-C., et al.: ICDAR2015 competition on smartphone document capture and OCR (SmartDoc). In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 1161–1165. IEEE (2015)

    Google Scholar 

  23. Li, X., Zhang, B., Liao, J., Sander, P.V.: Document rectification and illumination correction using a patch-based CNN. ACM Trans. Graph. (TOG) 38(6), 1–11 (2019)

    Google Scholar 

  24. Hertlein, F., Naumann, A., Philipp, P.: Inv3D: a high-resolution 3D invoice dataset for template-guided single-image document unwarping. Int. J. Doc. Anal. Recogn. (IJDAR), 1–12 (2023)

    Google Scholar 

  25. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems (NIPS), vol. 30 (2017)

    Google Scholar 

  26. Chen, Y., Mancini, M., Zhu, X., Akata, Z.: Semi-supervised and unsupervised deep visual learning: a survey, August 2022. arXiv:2208.11296 [cs]

  27. Borgwardt, K.M., Gretton, A., Rasch, M.J., Kriegel, H.-P., Schölkopf, B., Smola, A.J.: Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics 22(14), e49–e57 (2006)

    Article  Google Scholar 

  28. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  29. Feng, H., Wang, Y., Zhou, W., Deng, J., Li, H.: DocTr: document image transformer for geometric unwarping and illumination correction. In: Proceedings of the ACM International Conference on Multimedia (MM), pp. 273–281 (2021)

    Google Scholar 

  30. Gardner, M.-A., et al.: Learning to predict indoor illumination from a single image. ACM Trans. Graph. (TOG) 36(6), 1–14 (2017)

    Google Scholar 

  31. Li, Z., Chen, X., Pun, C.-M., Cun, X.: High-resolution document shadow removal via a large-scale real-world dataset and a frequency-aware shadow erasing net, September 2023. arXiv:2308.14221 [cs]

  32. Smith, J., et al.: The Lambertian assumption and Landsat data. Photogramm. Eng. Remote. Sens. 46(9), 1183–1189 (1980)

    Google Scholar 

  33. You, S., Matsushita, Y., Sinha, S., Bou, Y., Ikeuchi, K.: Multiview rectification of folded documents. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 40(2), 505–511 (2017)

    Google Scholar 

  34. Wang, Z., Simoncelli, E., Bovik, A.: Multiscale structural similarity for image quality assessment. In: Asilomar Conference on Signals, Systems and Computers (CSSC), pp. 1398–1402 (2003)

    Google Scholar 

  35. Levenshtein, V.I., et al.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Phys. Dokl. 10(8), 707–710 (1966)

    MathSciNet  Google Scholar 

  36. Edstedt, J., Athanasiadis, I., Wadenbäck, M., Felsberg, M.: DKM: dense kernelized feature matching for geometry estimation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17 765–17 775 (2023)

    Google Scholar 

Download references

Acknowledgement

The work was partially supported by the following: National Natural Science Foundation of China under no. 92370119 and No. 62276258, and No. 62376113; Jiangsu Science and Technology Programme (Natural Science Foundation of Jiangsu Province) under no. BE2020006-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiufeng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, W., Wang, Q., Huang, K., Gu, X., Guo, F. (2024). Coarse-to-Fine Document Image Registration for Dewarping. In: Barney Smith, E.H., Liwicki, M., Peng, L. (eds) Document Analysis and Recognition - ICDAR 2024. ICDAR 2024. Lecture Notes in Computer Science, vol 14807. Springer, Cham. https://doi.org/10.1007/978-3-031-70546-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70546-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70545-8

  • Online ISBN: 978-3-031-70546-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics