Abstract
Deep generative models have shown outstanding sample quality in a wide variety of modalities.
D. Molchanov and V. Ohanesian—Independent Researcher
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bansal, A., et al.: Cold diffusion: inverting arbitrary image transforms without noise. arXiv preprint arXiv:2208.09392 (2022)
Chen, R.T., Behrmann, J., Duvenaud, D.K., Jacobsen, J.H.: Residual flows for invertible generative modeling. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
EOSDIS: land, atmosphere near real-time capability for eos (lance) system operated by nasas earth science data and information system (esdis) (2020). https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)
Grathwohl, W., Chen, R.T., Bettencourt, J., Sutskever, I., Duvenaud, D.: Ffjord: free-form continuous dynamics for scalable reversible generative models. arXiv preprint arXiv:1810.01367 (2018)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. arXiv preprint arXiv:2006.11239 (2020)
Hoogeboom, E., Nielsen, D., Jaini, P., Forré, P., Welling, M.: Argmax flows and multinomial diffusion: learning categorical distributions. Adv. Neural. Inf. Process. Syst. 34, 12454–12465 (2021)
Karras, T., et al.: Alias-free generative adversarial networks. In: Advances in Neural Information Processing Systems, vol. 34 (2021)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)
Mahoney, M.: Large text compression benchmark (2011). http://www.mattmahoney.net/dc/text.html
Nachmani, E., Roman, R.S., Wolf, L.: Denoising diffusion gamma models. arXiv preprint arXiv:2110.05948 (2021)
Nichol, A., Dhariwal, P.: Improved denoising diffusion probabilistic models. arXiv preprint arXiv:2102.09672 (2021)
Ramesh, A., et al.: Zero-shot text-to-image generation. In: International Conference on Machine Learning, pp. 8821–8831. PMLR (2021)
Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: International Conference on Machine Learning, pp. 1278–1286. PMLR (2014)
Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: International Conference on Machine Learning, pp. 2256–2265. PMLR (2015)
Xiao, Z., Kreis, K., Kautz, J., Vahdat, A.: Vaebm: a symbiosis between variational autoencoders and energy-based models. arXiv preprint arXiv:2010.00654 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Okhotin, A. et al. (2024). Star-Shaped Denoising Diffusion Probabilistic Models (Extended Abstract). In: Hotho, A., Rudolph, S. (eds) KI 2024: Advances in Artificial Intelligence. KI 2024. Lecture Notes in Computer Science(), vol 14992 . Springer, Cham. https://doi.org/10.1007/978-3-031-70893-0_31
Download citation
DOI: https://doi.org/10.1007/978-3-031-70893-0_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70892-3
Online ISBN: 978-3-031-70893-0
eBook Packages: Computer ScienceComputer Science (R0)