Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Constant-Size Unbounded Multi-hop Fully Homomorphic Proxy Re-encryption from Lattices

  • Conference paper
  • First Online:
Computer Security – ESORICS 2024 (ESORICS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14984))

Included in the following conference series:

  • 461 Accesses

Abstract

Proxy re-encryption is a cryptosystem that achieves efficient encrypted data sharing by allowing a proxy to transform a ciphertext encrypted under one key into another ciphertext under a different key. Homomorphic proxy re-encryption (HPRE) extends this concept by integrating homomorphic encryption, allowing not only the sharing of encrypted data but also the homomorphic computations on such data. The existing HPRE schemes, however, are limited to a single or bounded number of hops of ciphertext re-encryptions. To address this limitation, this paper introduces a novel lattice-based, unbounded multi-hop fully homomorphic proxy re-encryption (FHPRE) scheme, with constant-size ciphertexts. Our FHPRE scheme supports an unbounded number of re-encryption operations and enables arbitrary homomorphic computations over original, re-encrypted, and evaluated ciphertexts. Additionally, we propose a potential application of our FHPRE scheme in the form of a non-interactive, constant-size multi-user computation system for cloud computing environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_17

    Chapter  Google Scholar 

  2. Aono, Y., Boyen, X., Phong, L.T., Wang, L.: Key-private proxy re-encryption under LWE. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol. 8250, pp. 1–18. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03515-4_1

    Chapter  Google Scholar 

  3. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes with applications to secure distributed storage. ACM Trans. Inf. Syst. Secur. 9(1), 1–30 (2006)

    Article  Google Scholar 

  4. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryptography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054122

    Chapter  Google Scholar 

  5. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. ACM Trans. Comput. Theory 6(3), 13:1–13:36 (2014)

    Google Scholar 

  6. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 190–213. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_8

    Chapter  Google Scholar 

  7. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. Electron. Colloquium Comput. Complex. TR11-109 (2011)

    Google Scholar 

  8. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_29

    Chapter  Google Scholar 

  9. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In: Proceedings of the 2007 ACM Conference on Computer and Communications Security. CCS 2007, pp. 185–194 (2007)

    Google Scholar 

  10. Chandran, N., Chase, M., Liu, F.-H., Nishimaki, R., Xagawa, K.: Re-encryption, functional re-encryption, and multi-hop re-encryption: a framework for achieving obfuscation-based security and instantiations from lattices. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 95–112. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_6

    Chapter  Google Scholar 

  11. Chen, H., Chillotti, I., Song, Y.: Multi-key homomorphic encryption from TFHE. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp. 446–472. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8_16

    Chapter  Google Scholar 

  12. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient multi-key homomorphic encryption with packed ciphertexts with application to oblivious neural network inference. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. CCS 2019, pp. 395–412 (2019)

    Google Scholar 

  13. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_15

    Chapter  Google Scholar 

  14. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_1

    Chapter  Google Scholar 

  15. Ducas, L., Micciancio, D.: Improved short lattice signatures in the standard model. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 335–352. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_19

    Chapter  Google Scholar 

  16. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_24

    Chapter  Google Scholar 

  17. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing. STOC 2009, pp. 169–178 (2009)

    Google Scholar 

  18. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5

    Chapter  Google Scholar 

  19. Ivan, A., Dodis, Y.: Proxy cryptography revisited. In: Proceedings of the Network and Distributed System Security Symposium. NDSS 2003 (2003)

    Google Scholar 

  20. Jiang, M., Hu, Y., Wang, B., Wang, F., Lai, Q.: Lattice-based multi-use unidirectional proxy re-encryption. Secur. Commun. Netw. 8(18), 3796–3803 (2015)

    Article  Google Scholar 

  21. Kirshanova, E.: Proxy re-encryption from lattices. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 77–94. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_5

    Chapter  Google Scholar 

  22. Lai, J., Huang, Z., Au, M.H., Mao, X.: Constant-size CCA-secure multi-hop unidirectional proxy re-encryption from indistinguishability obfuscation. Theor. Comput. Sci. 847, 1–16 (2020)

    Article  MathSciNet  Google Scholar 

  23. Li, J., Ma, C., Zhang, L., Yuan, Q.: Unidirectional FHPRE scheme from lattice for cloud computing. Int. J. Netw. Secur. 21(4), 592–600 (2019)

    Google Scholar 

  24. Li, J., Qiao, Z., Zhang, K., Cui, C.: A lattice-based homomorphic proxy re-encryption scheme with strong anti-collusion for cloud computing. Sensors 21(1), 288 (2021)

    Article  Google Scholar 

  25. Li, Z., Ma, C., Wang, D.: Towards multi-hop homomorphic identity-based proxy re-encryption via branching program. IEEE Access 5, 16214–16228 (2017)

    Article  Google Scholar 

  26. Li, Z., Ma, C., Wang, D.: Achieving multi-hop PRE via branching program. IEEE Trans. Cloud Comput. 8(1), 45–58 (2020)

    Article  Google Scholar 

  27. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Proceedings of the 44th Symposium on Theory of Computing Conference. STOC 2012, pp. 1219–1234 (2012)

    Google Scholar 

  28. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  29. Ma, C., Li, J., Ouyang, W.: A homomorphic proxy re-encryption from lattices. In: Provable Security - 10th International Conference. ProvSec 2016, vol. 10005, pp. 353–372 (2016)

    Google Scholar 

  30. Micciancio, D., Sorrell, J.: Ring packing and amortized FHEW bootstrapping. In: 45th International Colloquium on Automata, Languages, and Programming. ICALP 2018, vol. 107, pp. 100:1–100:14 (2018)

    Google Scholar 

  31. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_26

    Chapter  Google Scholar 

  32. Pareek, G.: Proxy visible re-encryption scheme with application to e-mail forwarding. In: Proceedings of the 10th International Conference on Security of Information and Networks, pp. 212–217 (2017)

    Google Scholar 

  33. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 84–93 (2005)

    Google Scholar 

  34. Zhao, F., Weng, J., Xie, W., Li, M., Weng, J.: HRA-secure attribute-based threshold proxy re-encryption from lattices. Inf. Sci. 655, 119900 (2024)

    Article  Google Scholar 

  35. Zhong, H., Cui, J., Shi, R., Xia, C.: Many-to-one homomorphic encryption scheme. Secur. Commun. Netw. 9(10), 1007–1015 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Major Program of Guangdong Basic and Applied Research Project under Grant No. 2019B030302008, National Natural Science Foundation of China under Grant Nos. 61825203, 62332007 and U22B2028, Science and Technology Major Project of Tibetan Autonomous Region of China under Grant No. XZ202201ZD0006G, Guangdong Provincial Science and Technology Project under Grant No. 2021A0505030033, National Joint Engineering Research Center of Network Security Detection and Protection Technology, Guangdong Key Laboratory of Data Security and Privacy Preserving, Guangdong Hong Kong Joint Laboratory for Data Security and Privacy Protection, and Engineering Research Center of Trustworthy AI, Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Weng .

Editor information

Editors and Affiliations

A Homomorphic Gates Evaluation

A Homomorphic Gates Evaluation

In this section, we describe the basic logic gate functions that are compatible with the bootstrapping algorithm.

  • NOT Gate The homomorphic NOT gate for \({\boldsymbol{{c}}}'\in \mathrm{\textsf {LWE}}_{\textbf{s}}^{4/q}(m, q/16)\) where \(m\in \{0,1\}\), is defined as: Let \({\boldsymbol{{c}}}'=(\textbf{a}',b')\), \((\textbf{a}, b)\) is computed by

    $$ \textsf {Eval.NOT}((\textbf{a}', b')) = (-\textbf{a}', \dfrac{q}{4}-b')\in \mathrm{\textsf {LWE}}_{\textbf{s}}^{4/q}(\lnot m, \dfrac{q}{16}).$$

    It satisfies: \(b-\textbf{a}\cdot \textbf{s}- \dfrac{q}{4}(1-m)=-e',\) with \(\left| -e'\right| <\dfrac{q}{16}\). No subsequent bootstrapping is needed for a NOT gate since there is no error increase.

  • AND Gate The homomorphic AND gate for \({\boldsymbol{{c}}}_i\in \mathrm{\textsf {LWE}}_{\textbf{s}}^{4/q}(m_i, q/16)\), where \(i=0,1, m_i\in \{0,1\}\), is defined as: Let \({\boldsymbol{{c}}}_i=(\textbf{a}_i,b_i)\), \((\textbf{a}, b)\) is computed by

    $$\textsf {Eval.AND}((\textbf{a}_0, b_0), (\textbf{a}_1, b_1)) = (\textbf{a}_0+\textbf{a}_1, -\dfrac{q}{8}+b_0+b_1)\in \mathrm{\textsf {LWE}}_{\textbf{s}}^{2/q}(m_0 \wedge m_1, \dfrac{q}{4}).$$

    It satisfies: \(b-\textbf{a}\cdot \textbf{s}-\dfrac{q}{2}(m_0m_1)=\dfrac{q}{4}(m_0-m_1)^2+(e_0+e_1)-\dfrac{q}{8}=\pm \dfrac{q}{8}+(e_0+e_1),\) with \(\left| \pm \dfrac{q}{8}+(e_0+e_1)\right| <\dfrac{q}{4}\).

  • OR Gate The homomorphic OR gate for \({\boldsymbol{{c}}}_i\in \mathrm{\textsf {LWE}}_{\textbf{s}}^{4/q}(m_i, q/16)\), where \(i=0,1, m_i\in \{0,1\}\), is defined as: Let \({\boldsymbol{{c}}}_i=(\textbf{a}_i,b_i)\), \((\textbf{a}, b)\) is computed by

    $$\textsf {Eval.OR}((\textbf{a}_0, b_0), (\textbf{a}_1, b_1)) = (\textbf{a}_0+\textbf{a}_1, \dfrac{q}{8}+b_0+b_1)\in \mathrm{\textsf {LWE}}_{\textbf{s}}^{2/q}(m_0\vee m_1, \dfrac{q}{4}).$$

    It satisfies: \(b-\textbf{a}\cdot \textbf{s}-\dfrac{q}{2}(m_0+m_1-m_0m_1)=-\dfrac{q}{4}(m_0-m_1)^2+(e_0+e_1)+\dfrac{q}{8}=\pm \dfrac{q}{8}+(e_0+e_1),\) with \(\left| \pm \dfrac{q}{8}+(e_0+e_1)\right| <\dfrac{q}{4}\).

  • XOR Gate The homomorphic XOR gate for \({\boldsymbol{{c}}}_i\in \mathrm{\textsf {LWE}}_{\textbf{s}}^{4/q}(m_i, q/16)\), where \(i=0,1, m_i\in \{0,1\}\), is defined as: Let \({\boldsymbol{{c}}}_i=(\textbf{a}_i,b_i)\), \((\textbf{a}, b)\) is computed by

    $$\textsf {Eval.XOR}((\textbf{a}_0, b_0), (\textbf{a}_1, b_1)) = (2\textbf{a}_0+2\textbf{a}_1, 2b_0+2b_1)\in \mathrm{\textsf {LWE}}_{\textbf{s}}^{2/q}(m_0\oplus m_1, \dfrac{q}{4}).$$

    It satisfies: \(b-\textbf{a}\cdot \textbf{s}-\dfrac{q}{2}(m_0+m_1-2m_0m_1)=q(m_0m_1)+2(e_0+e_1),\) with \(\left| q(m_0m_1)+2(e_0+e_1)\right| <\dfrac{q}{4}\ (\textrm{mod}\ q)\).

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, F., Wang, H., Weng, J. (2024). Constant-Size Unbounded Multi-hop Fully Homomorphic Proxy Re-encryption from Lattices. In: Garcia-Alfaro, J., Kozik, R., Choraś, M., Katsikas, S. (eds) Computer Security – ESORICS 2024. ESORICS 2024. Lecture Notes in Computer Science, vol 14984. Springer, Cham. https://doi.org/10.1007/978-3-031-70896-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70896-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70895-4

  • Online ISBN: 978-3-031-70896-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics