Abstract
We study the computational complexity of deciding whether a given deterministic or nondeterministic finite automaton (DFA or NFA) recognizes a language in a given subclass of regular languages. We prove NL-completeness of this problem on both automata models for the classes of comma-free codes, solid codes, and singleton languages. For the classes of combinational, finitely generated left ideal, star, comet, group, and co-finite languages, the membership problem is NL-complete on DFAs and PSPACE-complete on NFAs. We also show that the membership problem on NFAs is NL-complete for the classes of prefix-, suffix-, factor-, and subword-free, singletons, and finite languages and it is PSPACE-hard for symmetric definite languages. Next, we show that deciding whether a given unary partial DFA recognizes an ordered language is L-complete and deciding whether a partial DFA can be ordered is NP-complete. Finally, deciding whether a given DFA (NFA) recognizes an ordered or power-separating language is NL-hard (PSPACE-hard, respectively).
M. Hospodár—This publication was supported by the Operational Programme Integrated Infrastructure (OPII) for the project 313011BWH2: “InoCHF – Research and development in the field of innovative technologies in the management of patients with CHF”, co-financed by the European Regional Development Fund.
V. Olejár—Parts of this work were conducted during the Erasmus+ mobility program with mobility ID 1409624.
J. Šebej–This research is funded by Slovak Research and Development Agency project under contract No. APVV-21-0336 “Analysis of Judicial Decisions using Artificial Intelligence”.
Supported by Slovak Grant Agency for Science (VEGA) under contract 2/0096/23 “Automata and Formal Languages: Descriptional and Computational Complexity”.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley (1974)
Brzozowski, J.A.: Roots of star events. J. ACM 14(3), 466–477 (1967). https://doi.org/10.1145/321406.321409
Brzozowski, J.A., Shallit, J.O., Xu, Z.: Decision problems for convex languages. Inf. Comput. 209(3), 353–367 (2011). https://doi.org/10.1016/J.IC.2010.11.009
Cho, S., Huynh, D.T.: Finite-automaton aperiodicity is PSPACE-complete. Theor. Comput. Sci. 88(1), 99–116 (1991). https://doi.org/10.1016/0304-3975(91)90075-D
Han, Y.S., Salomaa, K.: Overlap-free languages and solid codes. Int. J. Found. Comput. Sci. 22(05), 1197–1209 (2011). https://doi.org/10.1142/S0129054111008647
Han, Y.S., Wang, Y., Wood, D.: Infix-free regular expressions and languages. Int. J. Found. Comput. Sci. 17(2), 379–394 (2006). https://doi.org/10.1142/S0129054106003887
Hartmanis, J., Immerman, N., Mahaney, S.R.: One-way log-tape reductions. In: FoCS 1978, pp. 65–72. IEEE Computer Society (1978). https://doi.org/10.1109/SFCS.1978.31
Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite automata - a survey. Inf. Comput. 209(3), 456–470 (2011). https://doi.org/10.1016/J.IC.2010.11.013
Holzer, M., Kutrib, M.: Structure and complexity of some subregular language families. In: The Role of Theory in Computer Science - Essays Dedicated to Janusz Brzozowski, pp. 59–82. World Scientific (2017). https://doi.org/10.1142/9789813148208_0003
Hunt, H.B., Rosenkrantz, D.J.: Computational parallels between the regular and context-free languages. SIAM J. Comput. 7(1), 99–114 (1978). https://doi.org/10.1137/0207007
Iván, S., Nagy-György, J.: On the structure and syntactic complexity of generalized definite languages. CoRR abs/1304.5714 (2013). http://arxiv.org/abs/1304.5714
Jones, N.D.: Space-bounded reducibility among combinatorial problems. J. Comput. Syst. Sci. 11(1), 68–85 (1975). https://doi.org/10.1016/S0022-0000(75)80050-X
Jürgensen, H., Staiger, L.: Automata for solid codes. Theor. Comput. Sci. 892, 25–47 (2021). https://doi.org/10.1016/J.TCS.2021.09.007
Kozen, D.: Lower bounds for natural proof systems. In: FoCS 1977, pp. 254–266. IEEE Computer Society (1977). https://doi.org/10.1109/SFCS.1977.16
Opatrny, J.: Total ordering problem. SIAM J. Comput. 8(1), 111–114 (1979). https://doi.org/10.1137/0208008
Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, Volume 1: Word, Language, Grammar. Springer, Cham (1997). https://doi.org/10.1007/978-3-642-59136-5
Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970). https://doi.org/10.1016/S0022-0000(70)80006-X
Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control 8(2), 190–194 (1965). https://doi.org/10.1016/S0019-9958(65)90108-7
Shyr, H.J., Thierrin, G.: Ordered automata and associated languages. Tamkang J. Math. 5, 9–20 (1974)
Shyr, H.J., Thierrin, G.: Power-separating regular languages. Math. Syst. Theory 8(1), 90–95 (1974). https://doi.org/10.1007/BF01761710
Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company (1997)
Stern, J.: Complexity of some problems from the theory of automata. Inf. Control 66(3), 163–176 (1985). https://doi.org/10.1016/S0019-9958(85)80058-9
Sudborough, I.H.: On tape-bounded complexity classes and multihead finite automata. J. Comput. Syst. Sci. 10(1), 62–76 (1975). https://doi.org/10.1016/S0022-0000(75)80014-6
Szelepcsényi, R.: The method of forced enumeration for nondeterministic automata. Acta Informatica 26(3), 279–284 (1988). https://doi.org/10.1007/BF00299636
Thierrin, G.: Permutation automata. Math. Syst. Theory 2(1), 83–90 (1968). https://doi.org/10.1007/BF01691347
Acknowledgments
We express our gratitude to the anonymous referees for their careful reading and useful suggestions for this paper. We also thank Galina Jirásková for fruitful discussions on the topic.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hospodár, M., Olejár, V., Šebej, J. (2024). Decision Problems for Subregular Classes. In: Fazekas, S.Z. (eds) Implementation and Application of Automata. CIAA 2024. Lecture Notes in Computer Science, vol 15015. Springer, Cham. https://doi.org/10.1007/978-3-031-71112-1_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-71112-1_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71111-4
Online ISBN: 978-3-031-71112-1
eBook Packages: Computer ScienceComputer Science (R0)