Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Decision Problems for Subregular Classes

  • Conference paper
  • First Online:
Implementation and Application of Automata (CIAA 2024)

Abstract

We study the computational complexity of deciding whether a given deterministic or nondeterministic finite automaton (DFA or NFA) recognizes a language in a given subclass of regular languages. We prove NL-completeness of this problem on both automata models for the classes of comma-free codes, solid codes, and singleton languages. For the classes of combinational, finitely generated left ideal, star, comet, group, and co-finite languages, the membership problem is NL-complete on DFAs and PSPACE-complete on NFAs. We also show that the membership problem on NFAs is NL-complete for the classes of prefix-, suffix-, factor-, and subword-free, singletons, and finite languages and it is PSPACE-hard for symmetric definite languages. Next, we show that deciding whether a given unary partial DFA recognizes an ordered language is L-complete and deciding whether a partial DFA can be ordered is NP-complete. Finally, deciding whether a given DFA (NFA) recognizes an ordered or power-separating language is NL-hard (PSPACE-hard, respectively).

M. Hospodár—This publication was supported by the Operational Programme Integrated Infrastructure (OPII) for the project 313011BWH2: “InoCHF – Research and development in the field of innovative technologies in the management of patients with CHF”, co-financed by the European Regional Development Fund.

V. Olejár—Parts of this work were conducted during the Erasmus+ mobility program with mobility ID 1409624.

J. Šebej–This research is funded by Slovak Research and Development Agency project under contract No. APVV-21-0336 “Analysis of Judicial Decisions using Artificial Intelligence”.

Supported by Slovak Grant Agency for Science (VEGA) under contract 2/0096/23 “Automata and Formal Languages: Descriptional and Computational Complexity”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley (1974)

    Google Scholar 

  2. Brzozowski, J.A.: Roots of star events. J. ACM 14(3), 466–477 (1967). https://doi.org/10.1145/321406.321409

    Article  MathSciNet  Google Scholar 

  3. Brzozowski, J.A., Shallit, J.O., Xu, Z.: Decision problems for convex languages. Inf. Comput. 209(3), 353–367 (2011). https://doi.org/10.1016/J.IC.2010.11.009

    Article  MathSciNet  Google Scholar 

  4. Cho, S., Huynh, D.T.: Finite-automaton aperiodicity is PSPACE-complete. Theor. Comput. Sci. 88(1), 99–116 (1991). https://doi.org/10.1016/0304-3975(91)90075-D

    Article  MathSciNet  Google Scholar 

  5. Han, Y.S., Salomaa, K.: Overlap-free languages and solid codes. Int. J. Found. Comput. Sci. 22(05), 1197–1209 (2011). https://doi.org/10.1142/S0129054111008647

    Article  MathSciNet  Google Scholar 

  6. Han, Y.S., Wang, Y., Wood, D.: Infix-free regular expressions and languages. Int. J. Found. Comput. Sci. 17(2), 379–394 (2006). https://doi.org/10.1142/S0129054106003887

    Article  MathSciNet  Google Scholar 

  7. Hartmanis, J., Immerman, N., Mahaney, S.R.: One-way log-tape reductions. In: FoCS 1978, pp. 65–72. IEEE Computer Society (1978). https://doi.org/10.1109/SFCS.1978.31

  8. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite automata - a survey. Inf. Comput. 209(3), 456–470 (2011). https://doi.org/10.1016/J.IC.2010.11.013

    Article  MathSciNet  Google Scholar 

  9. Holzer, M., Kutrib, M.: Structure and complexity of some subregular language families. In: The Role of Theory in Computer Science - Essays Dedicated to Janusz Brzozowski, pp. 59–82. World Scientific (2017). https://doi.org/10.1142/9789813148208_0003

  10. Hunt, H.B., Rosenkrantz, D.J.: Computational parallels between the regular and context-free languages. SIAM J. Comput. 7(1), 99–114 (1978). https://doi.org/10.1137/0207007

    Article  MathSciNet  Google Scholar 

  11. Iván, S., Nagy-György, J.: On the structure and syntactic complexity of generalized definite languages. CoRR abs/1304.5714 (2013). http://arxiv.org/abs/1304.5714

  12. Jones, N.D.: Space-bounded reducibility among combinatorial problems. J. Comput. Syst. Sci. 11(1), 68–85 (1975). https://doi.org/10.1016/S0022-0000(75)80050-X

    Article  MathSciNet  Google Scholar 

  13. Jürgensen, H., Staiger, L.: Automata for solid codes. Theor. Comput. Sci. 892, 25–47 (2021). https://doi.org/10.1016/J.TCS.2021.09.007

    Article  MathSciNet  Google Scholar 

  14. Kozen, D.: Lower bounds for natural proof systems. In: FoCS 1977, pp. 254–266. IEEE Computer Society (1977). https://doi.org/10.1109/SFCS.1977.16

  15. Opatrny, J.: Total ordering problem. SIAM J. Comput. 8(1), 111–114 (1979). https://doi.org/10.1137/0208008

    Article  MathSciNet  Google Scholar 

  16. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, Volume 1: Word, Language, Grammar. Springer, Cham (1997). https://doi.org/10.1007/978-3-642-59136-5

    Book  Google Scholar 

  17. Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970). https://doi.org/10.1016/S0022-0000(70)80006-X

    Article  MathSciNet  Google Scholar 

  18. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control 8(2), 190–194 (1965). https://doi.org/10.1016/S0019-9958(65)90108-7

    Article  MathSciNet  Google Scholar 

  19. Shyr, H.J., Thierrin, G.: Ordered automata and associated languages. Tamkang J. Math. 5, 9–20 (1974)

    MathSciNet  Google Scholar 

  20. Shyr, H.J., Thierrin, G.: Power-separating regular languages. Math. Syst. Theory 8(1), 90–95 (1974). https://doi.org/10.1007/BF01761710

    Article  MathSciNet  Google Scholar 

  21. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company (1997)

    Google Scholar 

  22. Stern, J.: Complexity of some problems from the theory of automata. Inf. Control 66(3), 163–176 (1985). https://doi.org/10.1016/S0019-9958(85)80058-9

    Article  MathSciNet  Google Scholar 

  23. Sudborough, I.H.: On tape-bounded complexity classes and multihead finite automata. J. Comput. Syst. Sci. 10(1), 62–76 (1975). https://doi.org/10.1016/S0022-0000(75)80014-6

    Article  MathSciNet  Google Scholar 

  24. Szelepcsényi, R.: The method of forced enumeration for nondeterministic automata. Acta Informatica 26(3), 279–284 (1988). https://doi.org/10.1007/BF00299636

    Article  MathSciNet  Google Scholar 

  25. Thierrin, G.: Permutation automata. Math. Syst. Theory 2(1), 83–90 (1968). https://doi.org/10.1007/BF01691347

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We express our gratitude to the anonymous referees for their careful reading and useful suggestions for this paper. We also thank Galina Jirásková for fruitful discussions on the topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Hospodár .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hospodár, M., Olejár, V., Šebej, J. (2024). Decision Problems for Subregular Classes. In: Fazekas, S.Z. (eds) Implementation and Application of Automata. CIAA 2024. Lecture Notes in Computer Science, vol 15015. Springer, Cham. https://doi.org/10.1007/978-3-031-71112-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71112-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71111-4

  • Online ISBN: 978-3-031-71112-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics