Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Universal Sign Language Recognition System Using Gesture Description Generation and Large Language Model

  • Conference paper
  • First Online:
Wireless Artificial Intelligent Computing Systems and Applications (WASA 2024)

Abstract

Sign language is a priceless means of communication for deaf and hard-of-hearing people to fully enable them to participate in society and interact with others. This study introduces a novel universal sign language system that uses the Gesture-script to generate a detailed description of gestures in videos, which involve continuous movement of hands, arms, heads, and body language. Subsequently, we input this description into a Large Language Model (LLM) to interpret sign language. We deployed a few-shot prompting technique for LLM, enabling it to precisely transfer the sign videos into corresponding sentences in natural language. Furthermore, the Few-shot prompting technique enables our system to interpret multiple types of sign language without pre-training or fine-tuning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Camgoz, N.C., Hadfield, S., Koller, O., Ney, H., Bowden, R.: Neural sign language translation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  2. Camgoz, N.C., Koller, O., Hadfield, S., Bowden, R.: Sign language transformers: joint end-to-end sign language recognition and translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  3. Cihan Camgoz, N., Hadfield, S., Koller, O., Bowden, R.: SubUNets: end-to-end hand shape and continuous sign language recognition. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  4. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000–16009 (2022)

    Google Scholar 

  5. Li, D., Opazo, C.R., Yu, X., Li, H.: Word-level deep sign language recognition from video: a new large-scale dataset and methods comparison (2020)

    Google Scholar 

  6. Li, J., Li, D., Savarese, S., Hoi, S.: Blip-2: bootstrapping language-image pre-training with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597 (2023)

  7. Lugaresi, C., et al.: MediaPipe: a framework for building perception pipelines. arXiv preprint arXiv:1906.08172 (2019)

  8. Ma, J., Yang, C., Mao, S., Zhang, J., Periaswamy, S.C., Patton, J.: Human trajectory completion with transformers. In: ICC 2022-IEEE International Conference on Communications, pp. 3346–3351. IEEE (2022)

    Google Scholar 

  9. Pereira-Montiel, E., et al.: Automatic sign language recognition based on accelerometry and surface electromyography signals: a study for colombian sign language. Biomed. Signal Process. Control 71, 103201 (2022)

    Article  Google Scholar 

  10. Podder, K.K., Chowdhury, M., Mahbub, Z.B., Kadir, M.: Bangla sign language alphabet recognition using transfer learning based convolutional neural network. Bangladesh J. Sci. Res. 31–33 (2020)

    Google Scholar 

  11. Podder, K.K., et al.: Bangla sign language (BdSL) alphabets and numerals classification using a deep learning model. Sensors 22(2), 574 (2022)

    Article  Google Scholar 

  12. Podder, K.K., et al.: Signer-independent Arabic sign language recognition system using deep learning model. Sensors 23(16), 7156 (2023)

    Article  Google Scholar 

  13. Podder, K.K., Tabassum, S., Khan, L.E., Salam, K.M.A., Maruf, R.I., Ahmed, A.: Design of a sign language transformer to enable the participation of persons with disabilities in remote healthcare systems for ensuring universal healthcare coverage. In: 2021 IEEE Technology and Engineering Management Conference-Europe (TEMSCON-EUR), pp. 1–6. IEEE (2021)

    Google Scholar 

  14. Tenney, I., Das, D., Pavlick, E.: BERT rediscovers the classical NLP pipeline. arXiv preprint arXiv:1905.05950 (2019)

  15. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processesing System, vol. 30 (2017)

    Google Scholar 

  16. Wang, X., Zhang, J., Mao, S., Periaswamy, S.C., Patton, J.: Locating multiple RFID tags with swin transformer-based RF hologram tensor filtering. In: 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall), pp. 1–2. IEEE (2022)

    Google Scholar 

  17. Wu, Y., Zhang, J., Wu, S., Mao, S., Wang, Y.: CMRM: a cross-modal reasoning model to enable zero-shot imitation learning for robotic RFID inventory in unstructured environments. In: IEEE Global Communications Conference (2023)

    Google Scholar 

Download references

Acknowledgment

This work is supported in part by the NSF under Grants CCSS-2245607 and CCSS-2245608.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Podder, K.K., Zhang, J., Wang, L. (2025). Universal Sign Language Recognition System Using Gesture Description Generation and Large Language Model. In: Cai, Z., Takabi, D., Guo, S., Zou, Y. (eds) Wireless Artificial Intelligent Computing Systems and Applications. WASA 2024. Lecture Notes in Computer Science, vol 14999. Springer, Cham. https://doi.org/10.1007/978-3-031-71470-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71470-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71469-6

  • Online ISBN: 978-3-031-71470-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics