Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Personalising the Training Process with Adaptive Virtual Reality: A Proposed Framework, Challenges, and Opportunities

  • Conference paper
  • First Online:
Extended Reality (XR Salento 2024)

Abstract

This work presents a conceptual framework that integrates Artificial Intelligence (AI) into immersive Virtual Reality (iVR) training systems, aiming to enhance adaptive learning environments that dynamically respond to individual users’ physiological states. The framework uses real-time data acquisition from multiple sources, including physiological sensors, eye-tracking and user interactions, processed through AI algorithms to personalise the training experience. By adjusting the complexity and nature of training tasks in real time, the framework seeks to maintain an optimal balance between challenge and skill, fostering an immersive learning environment. This work details some methodologies for data acquisition, the preprocessing required to synchronise and standardise diverse data streams, and the AI training techniques essential for effective real-time adaptation. It also discusses logistical considerations of computational load management in adaptive systems. Future work could explore the scalability of these systems and their potential for self-adaptation, where models are continuously refined and updated in real-time based on incoming data during user interactions.

This work was supported by the Ministry of Science and Innovation of Spain under project PID2020-119894GB-I00, co-financed through European Union FEDER funds and the project Humanaid (TED2021-129485B-C43) cofunded by “NextGenerationEU”/PRTR funds. It was also supported through REMAR Project (CPP2022-009724) funded by the Ministry of Science and Innovation of Spain (MCIN/AEI/ 10.13039/501100011033) and by the European Union NextGenerationEU/PRTR. And, finally, it was supported through the Consejería de Educación of the Junta de Castilla y León and the European Social Fund through a pre-doctoral grant (EDU/875/2021).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ba, S., Hu, X.: Measuring emotions in education using wearable devices: a systematic review. Comput. Educ. 200, 104797 (2023)

    Article  Google Scholar 

  2. Belo, D., Rodrigues, J., Vaz, J.R., et al.: Biosignals learning and synthesis using deep neural networks. Biomed. Eng. Online 16, 1–17 (2017)

    Article  Google Scholar 

  3. Clay, V., König, P., Koenig, S.: Eye tracking in virtual reality. J. Eye Move. Res. 12(1) (2019). https://doi.org/10.16910/jemr.12.1.3

  4. Dar, M.N., Akram, M.U., Khawaja, S.G., Pujari, A.N.: CNN and LSTM-based emotion charting using physiological signals. Sensors 20(16), 4551 (2020)

    Article  Google Scholar 

  5. Guillen-Sanz, H., Checa, D., Miguel-Alonso, I., Bustillo, A.: A systematic review of wearable biosensor usage in immersive virtual reality experiences. Virtual Real. 28(2), 74 (2024). https://doi.org/10.1007/s10055-024-00970-9

    Article  Google Scholar 

  6. Khalifa, Y., Mandic, D., Sejdić, E.: A review of hidden Markov models and recurrent neural networks for event detection and localization in biomedical signals. Inf. Fusion 69, 52–72 (2021). https://doi.org/10.48550/arXiv.2012.06104

    Article  Google Scholar 

  7. Li, R., Liu, Z.: Stress detection using deep neural networks. BMC Med. Inf. Decis. Mak. 20, 1–10 (2020). https://doi.org/10.1186/s12911-020-01299-4

    Article  Google Scholar 

  8. Mikhailenko, M., Maksimenko, N., Kurushkin, M.: Eye-tracking in immersive virtual reality for education: a review of the current progress and applications. Front. Educ. 7, 697032 (2022)

    Article  Google Scholar 

  9. Nakamura, J., Csikszentmihalyi, M., et al.: The concept of flow. Handb. Positive Psychol. 89, 105 (2002). https://doi.org/10.1007/978-94-017-9088-8_16

    Article  Google Scholar 

  10. Obermeyer, Z., Samra, J.K., Mullainathan, S.: Individual differences in normal body temperature: longitudinal big data analysis of patient records. bmj 359 (2017)

    Google Scholar 

  11. Oyelere, S.S., Bouali, N., Kaliisa, R., Obaido, G., Yunusa, A.A., Jimoh, E.R.: Exploring the trends of educational virtual reality games: a systematic review of empirical studies. Smart Learn. Environ. 7, 1–22 (2020)

    Article  Google Scholar 

  12. Ramírez-Sanz, J.M., Peña-Alonso, H.M., Serrano-Mamolar, A., Arnaiz-González, Á., Bustillo, A.: Detection of stress stimuli in learning contexts of IVR environments. In: International Conference on Extended Reality, pp. 427–440. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-43404-4_29

  13. Schmidt, P., Reiss, A., Dürichen, R., Van Laerhoven, K.: Wearable-based affect recognition–a review. Sensors 19(19), 4079 (2019)

    Article  Google Scholar 

  14. Serrano-Mamolar, A., Arevalillo-Herráez, M., Chicote-Huete, G., Boticario, J.G.: An intra-subject approach based on the application of hmm to predict concentration in educational contexts from nonintrusive physiological signals in real-world situations. Sensors 21(5), 1777 (2021). https://doi.org/10.3390/s21051777

    Article  Google Scholar 

  15. Shoumy, N.J., Ang, L.M., Seng, K.P., et al.: Multimodal big data affective analytics: a comprehensive survey using text, audio, visual and physiological signals. J. Netw. Comput. Appl. 149, 102447 (2020)

    Article  Google Scholar 

  16. Takaya, K., et al.: Jerome Bruner: Developing a Sense of the Possible. Springer, Heidelberg (2013). https://doi.org/10.1007/978-94-007-6781-2

  17. Tan, Y., Xu, W., Li, S., Chen, K.: Augmented and virtual reality (AR/VR) for education and training in the AEC industry: a systematic review of research and applications. Buildings 12(10), 1529 (2022). https://doi.org/10.3390/buildings12101529

    Article  Google Scholar 

  18. Zhang, T., El Ali, A., Wang, C., et al.: Corrnet: fine-grained emotion recognition for video watching using wearable physiological sensors. Sensors 21(1), 52 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gadea Lucas-Pérez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lucas-Pérez, G., Ramírez-Sanz, J.M., Serrano-Mamolar, A., Arnaiz-González, Á., Bustillo, A. (2024). Personalising the Training Process with Adaptive Virtual Reality: A Proposed Framework, Challenges, and Opportunities. In: De Paolis, L.T., Arpaia, P., Sacco, M. (eds) Extended Reality. XR Salento 2024. Lecture Notes in Computer Science, vol 15027. Springer, Cham. https://doi.org/10.1007/978-3-031-71707-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71707-9_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71706-2

  • Online ISBN: 978-3-031-71707-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics