Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Proposal for Automatic Demand Forecast Model Selection

  • Conference paper
  • First Online:
Navigating Unpredictability: Collaborative Networks in Non-linear Worlds (PRO-VE 2024)

Abstract

Demand forecasting is critical within collaborative networks, enabling suppliers, manufacturers, and retailers to synchronize their operations and achieve enhanced supply chain efficiency. Despite a wealth of research on time series forecast model selection and the availability of numerous forecast models, selecting the most appropriate model for a specific time series remains a challenging task. In this study, an automatic demand forecast model selection procedure is proposed that includes a wide range of statistical and machine learning forecast models. The optimization of the hyperparameters is performed on all the models. The study is validated on M3 monthly data, outperforming all submitted methods and demonstrating significant improvements in terms of accuracy. The approach was also applied to a collaborative network company.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdallah, M., Rossi, R., Mahadik, K., Kim, S., Zhao, H., Bagchi, S.: AutoForecast: Automatic time-series forecasting model selection. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management. pp. 5–14. CIKM’22, Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3511808.3557241

  2. Adya, M., Collopy, F., Armstrong, J.S., Kennedy, M.: Automatic identification of time series features for rule-based forecasting. Int. J. Forecast. 17(2), 143–157 (2001). https://doi.org/10.1016/S0169-2070(01)00079-6

    Article  Google Scholar 

  3. Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Parzen, E., Tanabe, K., Kitagawa, G. (eds.), Selected Papers of Hirotugu Akaike, pp. 199–213. Springer, New York, NY (1998). https://doi.org/10.1007/978-1-4612-1694-0_15

  4. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A nextgeneration hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2019)

    Google Scholar 

  5. Ali, Ö.G., Sayın, S., van Woensel, T., Fransoo, J.: SKU demand forecasting in the presence of promotions. Expert Syst. Appl. 36(10), 12340–12348 (2009). https://doi.org/10.1016/j.eswa.2009.04.052

    Article  Google Scholar 

  6. Amini, M.H., Kargarian, A., Karabasoglu, O.: ARIMA-based decoupled time series forecasting of electric vehicle charging demand for stochastic power system operation. Electr. Power Syst. Res. 140, 378–390 (2016). https://doi.org/10.1016/j.epsr.2016.06.003

    Article  Google Scholar 

  7. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for Hyper-Parameter Optimization. In: Advances in Neural Information Processing Systems, vol. 24. Curran Associates, Inc. (2011)

    Google Scholar 

  8. Boone, T., Ganeshan, R., Jain, A., Sanders, N.R.: Forecasting sales in the supply chain: Consumer analytics in the big data era. Int. J. Forecast. 35(1), 170–180 (2019). https://doi.org/10.1016/j.ijforecast.2018.09.003

    Article  Google Scholar 

  9. Cawood, P., Van Zyl, T.: Evaluating state-of-the-art, forecasting ensembles and meta-learning strategies for model fusion. Forecasting 4(3), 732–751 (2022). https://doi.org/10.3390/forecast4030040

    Article  Google Scholar 

  10. Collopy, F., Armstrong, J.S.: Rule-based forecasting: development and validation of an expert systems approach to combining time series extrapolations. Manage. Sci. 38(10), 1394–1414 (1992). https://doi.org/10.1287/mnsc.38.10.1394

    Article  Google Scholar 

  11. Davydenko, A., Fildes, R.: Measuring forecasting accuracy: the case of judgmental adjustments to SKU-level demand forecasts. Int. J. Forecast. 29(3), 510–522 (2013). https://doi.org/10.1016/j.ijforecast.2012.09.002

    Article  Google Scholar 

  12. Fildes, R.A.: Beyond forecasting competitions. Int. J. Forecast. 17(4), 556–560 (2001)

    Google Scholar 

  13. Fildes, R.: Evaluation of aggregate and individual forecast method selection rules. Manage. Sci. 35(9), 1056–1065 (1989). https://doi.org/10.1287/mnsc.35.9.1056

    Article  Google Scholar 

  14. Fildes, R., Makridakis, S.: The impact of empirical accuracy studies on time series analysis and forecasting. Int. Stat. Rev./Revue Internationale de Statistique 63(3), 289–308 (1995). https://doi.org/10.2307/1403481

    Article  Google Scholar 

  15. Fildes, R., Petropoulos, F.: Simple versus complex selection rules for forecasting many time series. J. Bus. Res. 68(8), 1692–1701 (2015). https://doi.org/10.1016/j.jbusres.2015.03.028

    Article  Google Scholar 

  16. Fiorucci, J.A., Pellegrini, T.R., Louzada, F., Petropoulos, F., Koehler, A.B.: Models for optimising the theta method and their relationship to state space models. Int. J. Forecast. 32(4), 1151–1161 (2016). https://doi.org/10.1016/j.ijforecast.2016.02.005

    Article  Google Scholar 

  17. Garcìa-Aroca, C., Asunciòn Martìnez-Mayoral, M., Morales-Socuéllamos, J., Segura-Heras, J.V.: An algorithm for automatic selection and combination of forecast models. Expert Syst. Appl. 237, 121636 (2024). https://doi.org/10.1016/j.eswa.2023.121636

    Article  Google Scholar 

  18. Garza, F., Canseco, M.M., Challù, C., Olivares, K.G.: StatsForecast: Lightning fast forecasting with statistical and econometric models. PyCon Salt Lake City, Utah, US 2022 (2022), https://github.com/Nixtla/statsforecast

  19. Hyndman, R.J., Koehler, A.B.: Another look at measures of forecast accuracy. Int. J. Forecast. 22(4), 679–688 (2006)

    Article  Google Scholar 

  20. Hyndman, R.J., Khandakar, Y.: Automatic time series forecasting: the forecast package for R. J. Stat. Softw. 27(3) (2008). https://doi.org/10.18637/jss.v027.i03

  21. Hyndman, R.J., Koehler, A.B., Snyder, R.D., Grose, S.: A state space framework for automatic forecasting using exponential smoothing methods. Int. J. Forecast. 18(3), 439–454 (2002). https://doi.org/10.1016/S0169-2070(01)00110-8

    Article  Google Scholar 

  22. Kourentzes, N., Barrow, D., Petropoulos, F.: Another look at forecast selection and combination: evidence from forecast pooling. Int. J. Prod. Econ. 209, 226–235 (2019). https://doi.org/10.1016/j.ijpe.2018.05.019

    Article  Google Scholar 

  23. Koutsandreas, D., Spiliotis, E., Petropoulos, F., Assimakopoulos, V.: On the selection of forecasting accuracy measures. J. Operat. Res. Soc. 73(5), 937–954 (2022). https://doi.org/10.1080/01605682.2021.1892464

    Article  Google Scholar 

  24. Ma, S., Fildes, R.: Retail sales forecasting with meta-learning. Eur. J. Oper. Res. 288(1), 111–128 (2021). https://doi.org/10.1016/j.ejor.2020.05.038

    Article  MathSciNet  Google Scholar 

  25. Makridakis, S., et al.: The accuracy of extrapolation (time series) methods: results of a forecasting competition. J. Forecast. 1(2), 111–153 (1982). https://doi.org/10.1002/for.3980010202

    Article  Google Scholar 

  26. Makridakis, S., Spiliotis, E., Assimakopoulos, V.: The M4 Competition: 100,000 time series and 61 forecasting methods. Int. J. Forecast. 36(1), 54–74 (2020). https://doi.org/10.1016/j.ijforecast.2019.04.014

    Article  Google Scholar 

  27. Makridakis, S., Spiliotis, E., Assimakopoulos, V.: M5 accuracy competition: results, findings, and conclusions. Int. J. Forecast. 38(4), 1346–1364 (2022). https://doi.org/10.1016/j.ijforecast.2021.11.013

    Article  Google Scholar 

  28. Montero-Manso, P., Athanasopoulos, G., Hyndman, R.J., Talagala, T.S.: FFORMA: feature-based forecast model averaging. Int. J. Forecast. 36(1), 86–92 (2020). https://doi.org/10.1016/j.ijforecast.2019.02.011

    Article  Google Scholar 

  29. Olivares, K.G., Chall, C., Garza, F., Canseco, M.M., Dubrawski, A.: NeuralForecast: User friendly state-of-the-art neural forecasting models. PyCon Salt Lake City, Utah, US 2022 (2022). https://github.com/Nixtla/neuralforecast

  30. Pedregal, D.J.: New algorithms for automatic modelling and forecasting of decision support systems. Decis. Support Syst. 148, 113585 (2021). https://doi.org/10.1016/j.dss.2021.113585

    Article  Google Scholar 

  31. Pegels, C.C.: Exponential forecasting: some new variations. Manage. Sci. 15(5), 311–315 (1969)

    Google Scholar 

  32. Petropoulos, F., Kourentzes, N., Nikolopoulos, K., Siemsen, E.: Judgmental selection of forecasting models. J. Oper. Manag. 60(1), 34–46 (2018). https://doi.org/10.1016/j.jom.2018.05.005

    Article  Google Scholar 

  33. Petropoulos, F., Makridakis, S., Assimakopoulos, V., Nikolopoulos, K.: ‘Horses for Courses’ in demand forecasting. Eur. J. Oper. Res. 237(1), 152–163 (2014). https://doi.org/10.1016/j.ejor.2014.02.036

    Article  MathSciNet  Google Scholar 

  34. Poler, R., Mula, J.: Forecasting model selection through out-of-sample rolling horizon weighted errors. Expert Syst. Appl. 38(12), 14778–14785 (2011). https://doi.org/10.1016/j.eswa.2011.05.072

    Article  Google Scholar 

  35. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978). https://doi.org/10.1214/aos/1176344136

    Article  MathSciNet  Google Scholar 

  36. Taghiyeh, S., Lengacher, D.C., Handfield, R.B.: Forecasting model selection using intermediate classification: application to MonarchFx corporation. Expert Syst. Appl. 151, 113371 (2020). https://doi.org/10.1016/j.eswa.2020.113371

    Article  Google Scholar 

  37. Talagala, T.S., Hyndman, R.J., Athanasopoulos, G.: Meta-learning how to forecast time series. J. Forecast. 42(6), 1476–1501 (2023). https://doi.org/10.1002/for.2963

    Article  MathSciNet  Google Scholar 

  38. Tashman, L.J.: Out-of-sample tests of forecasting accuracy: an analysis and review. Int. J. Forecast. 16(4), 437–450 (2000). https://doi.org/10.1016/S0169-2070(00)00065-0

    Article  Google Scholar 

  39. Villegas, M.A., Pedregal, D.J., Trapero, J.R.: A support vector machine for model selection in demand forecasting applications. Comput. Ind. Eng. 121, 1–7 (2018). https://doi.org/10.1016/j.cie.2018.04.042

    Article  Google Scholar 

  40. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997). https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wassim Garred .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garred, W., Oger, R., Barthe-Delanoe, AM., Lauras, M. (2024). A Proposal for Automatic Demand Forecast Model Selection. In: Camarinha-Matos, L.M., Ortiz, A., Boucher, X., Barthe-Delanoë, AM. (eds) Navigating Unpredictability: Collaborative Networks in Non-linear Worlds. PRO-VE 2024. IFIP Advances in Information and Communication Technology, vol 727. Springer, Cham. https://doi.org/10.1007/978-3-031-71743-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71743-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71742-0

  • Online ISBN: 978-3-031-71743-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics