Abstract
Demand forecasting is critical within collaborative networks, enabling suppliers, manufacturers, and retailers to synchronize their operations and achieve enhanced supply chain efficiency. Despite a wealth of research on time series forecast model selection and the availability of numerous forecast models, selecting the most appropriate model for a specific time series remains a challenging task. In this study, an automatic demand forecast model selection procedure is proposed that includes a wide range of statistical and machine learning forecast models. The optimization of the hyperparameters is performed on all the models. The study is validated on M3 monthly data, outperforming all submitted methods and demonstrating significant improvements in terms of accuracy. The approach was also applied to a collaborative network company.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdallah, M., Rossi, R., Mahadik, K., Kim, S., Zhao, H., Bagchi, S.: AutoForecast: Automatic time-series forecasting model selection. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management. pp. 5–14. CIKM’22, Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3511808.3557241
Adya, M., Collopy, F., Armstrong, J.S., Kennedy, M.: Automatic identification of time series features for rule-based forecasting. Int. J. Forecast. 17(2), 143–157 (2001). https://doi.org/10.1016/S0169-2070(01)00079-6
Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Parzen, E., Tanabe, K., Kitagawa, G. (eds.), Selected Papers of Hirotugu Akaike, pp. 199–213. Springer, New York, NY (1998). https://doi.org/10.1007/978-1-4612-1694-0_15
Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A nextgeneration hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2019)
Ali, Ö.G., Sayın, S., van Woensel, T., Fransoo, J.: SKU demand forecasting in the presence of promotions. Expert Syst. Appl. 36(10), 12340–12348 (2009). https://doi.org/10.1016/j.eswa.2009.04.052
Amini, M.H., Kargarian, A., Karabasoglu, O.: ARIMA-based decoupled time series forecasting of electric vehicle charging demand for stochastic power system operation. Electr. Power Syst. Res. 140, 378–390 (2016). https://doi.org/10.1016/j.epsr.2016.06.003
Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for Hyper-Parameter Optimization. In: Advances in Neural Information Processing Systems, vol. 24. Curran Associates, Inc. (2011)
Boone, T., Ganeshan, R., Jain, A., Sanders, N.R.: Forecasting sales in the supply chain: Consumer analytics in the big data era. Int. J. Forecast. 35(1), 170–180 (2019). https://doi.org/10.1016/j.ijforecast.2018.09.003
Cawood, P., Van Zyl, T.: Evaluating state-of-the-art, forecasting ensembles and meta-learning strategies for model fusion. Forecasting 4(3), 732–751 (2022). https://doi.org/10.3390/forecast4030040
Collopy, F., Armstrong, J.S.: Rule-based forecasting: development and validation of an expert systems approach to combining time series extrapolations. Manage. Sci. 38(10), 1394–1414 (1992). https://doi.org/10.1287/mnsc.38.10.1394
Davydenko, A., Fildes, R.: Measuring forecasting accuracy: the case of judgmental adjustments to SKU-level demand forecasts. Int. J. Forecast. 29(3), 510–522 (2013). https://doi.org/10.1016/j.ijforecast.2012.09.002
Fildes, R.A.: Beyond forecasting competitions. Int. J. Forecast. 17(4), 556–560 (2001)
Fildes, R.: Evaluation of aggregate and individual forecast method selection rules. Manage. Sci. 35(9), 1056–1065 (1989). https://doi.org/10.1287/mnsc.35.9.1056
Fildes, R., Makridakis, S.: The impact of empirical accuracy studies on time series analysis and forecasting. Int. Stat. Rev./Revue Internationale de Statistique 63(3), 289–308 (1995). https://doi.org/10.2307/1403481
Fildes, R., Petropoulos, F.: Simple versus complex selection rules for forecasting many time series. J. Bus. Res. 68(8), 1692–1701 (2015). https://doi.org/10.1016/j.jbusres.2015.03.028
Fiorucci, J.A., Pellegrini, T.R., Louzada, F., Petropoulos, F., Koehler, A.B.: Models for optimising the theta method and their relationship to state space models. Int. J. Forecast. 32(4), 1151–1161 (2016). https://doi.org/10.1016/j.ijforecast.2016.02.005
Garcìa-Aroca, C., Asunciòn Martìnez-Mayoral, M., Morales-Socuéllamos, J., Segura-Heras, J.V.: An algorithm for automatic selection and combination of forecast models. Expert Syst. Appl. 237, 121636 (2024). https://doi.org/10.1016/j.eswa.2023.121636
Garza, F., Canseco, M.M., Challù, C., Olivares, K.G.: StatsForecast: Lightning fast forecasting with statistical and econometric models. PyCon Salt Lake City, Utah, US 2022 (2022), https://github.com/Nixtla/statsforecast
Hyndman, R.J., Koehler, A.B.: Another look at measures of forecast accuracy. Int. J. Forecast. 22(4), 679–688 (2006)
Hyndman, R.J., Khandakar, Y.: Automatic time series forecasting: the forecast package for R. J. Stat. Softw. 27(3) (2008). https://doi.org/10.18637/jss.v027.i03
Hyndman, R.J., Koehler, A.B., Snyder, R.D., Grose, S.: A state space framework for automatic forecasting using exponential smoothing methods. Int. J. Forecast. 18(3), 439–454 (2002). https://doi.org/10.1016/S0169-2070(01)00110-8
Kourentzes, N., Barrow, D., Petropoulos, F.: Another look at forecast selection and combination: evidence from forecast pooling. Int. J. Prod. Econ. 209, 226–235 (2019). https://doi.org/10.1016/j.ijpe.2018.05.019
Koutsandreas, D., Spiliotis, E., Petropoulos, F., Assimakopoulos, V.: On the selection of forecasting accuracy measures. J. Operat. Res. Soc. 73(5), 937–954 (2022). https://doi.org/10.1080/01605682.2021.1892464
Ma, S., Fildes, R.: Retail sales forecasting with meta-learning. Eur. J. Oper. Res. 288(1), 111–128 (2021). https://doi.org/10.1016/j.ejor.2020.05.038
Makridakis, S., et al.: The accuracy of extrapolation (time series) methods: results of a forecasting competition. J. Forecast. 1(2), 111–153 (1982). https://doi.org/10.1002/for.3980010202
Makridakis, S., Spiliotis, E., Assimakopoulos, V.: The M4 Competition: 100,000 time series and 61 forecasting methods. Int. J. Forecast. 36(1), 54–74 (2020). https://doi.org/10.1016/j.ijforecast.2019.04.014
Makridakis, S., Spiliotis, E., Assimakopoulos, V.: M5 accuracy competition: results, findings, and conclusions. Int. J. Forecast. 38(4), 1346–1364 (2022). https://doi.org/10.1016/j.ijforecast.2021.11.013
Montero-Manso, P., Athanasopoulos, G., Hyndman, R.J., Talagala, T.S.: FFORMA: feature-based forecast model averaging. Int. J. Forecast. 36(1), 86–92 (2020). https://doi.org/10.1016/j.ijforecast.2019.02.011
Olivares, K.G., Chall, C., Garza, F., Canseco, M.M., Dubrawski, A.: NeuralForecast: User friendly state-of-the-art neural forecasting models. PyCon Salt Lake City, Utah, US 2022 (2022). https://github.com/Nixtla/neuralforecast
Pedregal, D.J.: New algorithms for automatic modelling and forecasting of decision support systems. Decis. Support Syst. 148, 113585 (2021). https://doi.org/10.1016/j.dss.2021.113585
Pegels, C.C.: Exponential forecasting: some new variations. Manage. Sci. 15(5), 311–315 (1969)
Petropoulos, F., Kourentzes, N., Nikolopoulos, K., Siemsen, E.: Judgmental selection of forecasting models. J. Oper. Manag. 60(1), 34–46 (2018). https://doi.org/10.1016/j.jom.2018.05.005
Petropoulos, F., Makridakis, S., Assimakopoulos, V., Nikolopoulos, K.: ‘Horses for Courses’ in demand forecasting. Eur. J. Oper. Res. 237(1), 152–163 (2014). https://doi.org/10.1016/j.ejor.2014.02.036
Poler, R., Mula, J.: Forecasting model selection through out-of-sample rolling horizon weighted errors. Expert Syst. Appl. 38(12), 14778–14785 (2011). https://doi.org/10.1016/j.eswa.2011.05.072
Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978). https://doi.org/10.1214/aos/1176344136
Taghiyeh, S., Lengacher, D.C., Handfield, R.B.: Forecasting model selection using intermediate classification: application to MonarchFx corporation. Expert Syst. Appl. 151, 113371 (2020). https://doi.org/10.1016/j.eswa.2020.113371
Talagala, T.S., Hyndman, R.J., Athanasopoulos, G.: Meta-learning how to forecast time series. J. Forecast. 42(6), 1476–1501 (2023). https://doi.org/10.1002/for.2963
Tashman, L.J.: Out-of-sample tests of forecasting accuracy: an analysis and review. Int. J. Forecast. 16(4), 437–450 (2000). https://doi.org/10.1016/S0169-2070(00)00065-0
Villegas, M.A., Pedregal, D.J., Trapero, J.R.: A support vector machine for model selection in demand forecasting applications. Comput. Ind. Eng. 121, 1–7 (2018). https://doi.org/10.1016/j.cie.2018.04.042
Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997). https://doi.org/10.1109/4235.585893
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 IFIP International Federation for Information Processing
About this paper
Cite this paper
Garred, W., Oger, R., Barthe-Delanoe, AM., Lauras, M. (2024). A Proposal for Automatic Demand Forecast Model Selection. In: Camarinha-Matos, L.M., Ortiz, A., Boucher, X., Barthe-Delanoë, AM. (eds) Navigating Unpredictability: Collaborative Networks in Non-linear Worlds. PRO-VE 2024. IFIP Advances in Information and Communication Technology, vol 727. Springer, Cham. https://doi.org/10.1007/978-3-031-71743-7_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-71743-7_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71742-0
Online ISBN: 978-3-031-71743-7
eBook Packages: Computer ScienceComputer Science (R0)