Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

The MRI-derived brain network serves as a pivotal instrument in elucidating both the structural and functional aspects of the brain, encompassing the ramifications of diseases and developmental processes. However, prevailing methodologies, often focusing on synchronous BOLD signals from functional MRI (fMRI), may not capture directional influences among brain regions and rarely tackle temporal functional dynamics. In this study, we first construct the brain-effective network via the dynamic causal model. Subsequently, we introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE). This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks via an ordinary differential equation (ODE) model, which characterizes spatial-temporal brain dynamics. Our framework is validated on several clinical phenotype prediction tasks using two independent publicly available datasets (HCP and OASIS). The experimental results clearly demonstrate the advantages of our model compared to several state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. American Psychiatric Association, D., Association, A.P., et al.: Diagnostic and statistical manual of mental disorders: DSM-5, vol. 5. American psychiatric association Washington, DC (2013)

    Google Scholar 

  2. Arevalo-Rodriguez, I., Smailagic, N., i Figuls, M.R., Ciapponi, A., Sanchez-Perez, E., Giannakou, A., Pedraza, O.L., Cosp, X.B., Cullum, S.: Mini-mental state examination (mmse) for the detection of alzheimer’s disease and other dementias in people with mild cognitive impairment (mci). Cochrane Database of Systematic Reviews (3) (2015)

    Google Scholar 

  3. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nature reviews neuroscience 10(3), 186–198 (2009)

    Article  Google Scholar 

  4. Chen, D., Zhang, L.: Fe-stgnn: Spatio-temporal graph neural network with functional and effective connectivity fusion for mci diagnosis. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 67–76. Springer (2023)

    Google Scholar 

  5. Chuang, K.C., Ramakrishnapillai, S., Madden, K., St Amant, J., McKlveen, K., Gwizdala, K., Dhullipudi, R., Bazzano, L., Carmichael, O.: Brain effective connectivity and functional connectivity as markers of lifespan vascular exposures in middle-aged adults: The bogalusa heart study. Frontiers in Aging Neuroscience 15, 1110434 (2023)

    Article  Google Scholar 

  6. Demirbilek, O., Rekik, I.: Recurrent multigraph integrator network for predicting the evolution of population-driven brain connectivity templates. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 584–594. Springer (2021)

    Google Scholar 

  7. Dennis, E.L., Thompson, P.M.: Functional brain connectivity using fmri in aging and alzheimer’s disease. Neuropsychology review 24, 49–62 (2014)

    Article  Google Scholar 

  8. Dvornek, N.C., Ventola, P., Pelphrey, K.A., Duncan, J.S.: Identifying autism from resting-state fmri using long short-term memory networks. In: Machine Learning in Medical Imaging: 8th International Workshop, MLMI 2017, Held in Conjunction with MICCAI 2017, Quebec City, QC, Canada, September 10, 2017, Proceedings 8. pp. 362–370. Springer (2017)

    Google Scholar 

  9. Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  10. Friston, K.J., Harrison, L., Penny, W.: Dynamic causal modelling. Neuroimage 19(4), 1273–1302 (2003)

    Article  Google Scholar 

  11. Gadgil, S., Zhao, Q., Pfefferbaum, A., Sullivan, E.V., Adeli, E., Pohl, K.M.: Spatio-temporal graph convolution for resting-state fmri analysis. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 528–538. Springer (2020)

    Google Scholar 

  12. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: Fsl. Neuroimage 62(2), 782–790 (2012)

    Article  Google Scholar 

  13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  14. LaMontagne, P.J., Benzinger, T.L., Morris, J.C., Keefe, S., Hornbeck, R., Xiong, C., Grant, E., Hassenstab, J., Moulder, K., Vlassenko, A.G., et al.: Oasis-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and alzheimer disease. MedRxiv (2019)

    Google Scholar 

  15. Li, J., Pan, W., Huang, H., Pan, J., Wang, F.: Stgate: Spatial-temporal graph attention network with a transformer encoder for eeg-based emotion recognition. Frontiers in Human Neuroscience 17, 1169949 (2023)

    Article  Google Scholar 

  16. Pinto, A.M., Geenen, R., Wager, T.D., Lumley, M.A., Häuser, W., Kosek, E., Ablin, J.N., Amris, K., Branco, J., Buskila, D., et al.: Emotion regulation and the salience network: a hypothetical integrative model of fibromyalgia. Nature Reviews Rheumatology 19(1), 44–60 (2023)

    Article  Google Scholar 

  17. Sanchez-Romero, R., Ramsey, J.D., Zhang, K., Glymour, M.R., Huang, B., Glymour, C.: Estimating feedforward and feedback effective connections from fmri time series: Assessments of statistical methods. Network Neuroscience 3(2), 274–306 (2019)

    Article  Google Scholar 

  18. Serrano-Pozo, A., Das, S., Hyman, B.T.: Apoe and alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches. The Lancet Neurology 20(1), 68–80 (2021)

    Article  Google Scholar 

  19. Shchur, O., Mumme, M., Bojchevski, A., Günnemann, S.: Pitfalls of graph neural network evaluation. arXiv preprint arXiv:1811.05868 (2018)

  20. Shinn, M., Hu, A., Turner, L., Noble, S., Preller, K.H., Ji, J.L., Moujaes, F., Achard, S., Scheinost, D., Constable, R.T., et al.: Functional brain networks reflect spatial and temporal autocorrelation. Nature Neuroscience pp. 1–12 (2023)

    Google Scholar 

  21. Smith, S.M., Miller, K.L., Salimi-Khorshidi, G., Webster, M., Beckmann, C.F., Nichols, T.E., Ramsey, J.D., Woolrich, M.W.: Network modelling methods for fmri. Neuroimage 54(2), 875–891 (2011)

    Article  Google Scholar 

  22. Stam, C., Van Straaten, E., Van Dellen, E., Tewarie, P., Gong, G., Hillebrand, A., Meier, J., Van Mieghem, P.: The relation between structural and functional connectivity patterns in complex brain networks. International Journal of Psychophysiology 103, 149–160 (2016)

    Article  Google Scholar 

  23. Suykens, J.A., Lukas, L., Van Dooren, P., De Moor, B., Vandewalle, J., et al.: Least squares support vector machine classifiers: a large scale algorithm. In: European Conference on Circuit Theory and Design, ECCTD. vol. 99, pp. 839–842. Citeseer (1999)

    Google Scholar 

  24. Tang, H., Guo, L., Fu, X., Wang, Y., Mackin, S., Ajilore, O., Leow, A.D., Thompson, P.M., Huang, H., Zhan, L.: Signed graph representation learning for functional-to-structural brain network mapping. Medical image analysis 83, 102674 (2023)

    Article  Google Scholar 

  25. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K., Consortium, W.M.H., et al.: The wu-minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Google Scholar 

  26. Whitfield-Gabrieli, S., Nieto-Castanon, A.: Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain connectivity 2(3), 125–141 (2012)

    Article  Google Scholar 

  27. Yildirim, E., SONCU BÜYÜKİŞCAN, E.: Default mode network connectivity in alzheimer’s disease. Turkish Journal of Psychiatry 30(4) (2019)

    Google Scholar 

  28. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical graph representation learning with differentiable pooling. Advances in neural information processing systems 31 (2018)

    Google Scholar 

  29. Zhao, C., Zhan, L., Thompson, P.M., Huang, H.: Revealing continuous brain dynamical organization with multimodal graph transformer. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 346–355. Springer (2022)

    Google Scholar 

Download references

Acknowledgments

This study was partially supported by the Presidential Research Fellowship (PRF) in the Department of Computer Science at the University of Texas Rio Grande Valley (UTRGV), and the UTRGV seed grant, as well as by the NSF (2112631, 2045848, 2319449, 2319450, 2319451, 2215789, 2319451), and the NIH (R01AG071243, R01MH125928, U01AG068057, R21EY034179).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haoteng Tang or Liang Zhan .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 202 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, H. et al. (2024). Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15002. Springer, Cham. https://doi.org/10.1007/978-3-031-72069-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72069-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72068-0

  • Online ISBN: 978-3-031-72069-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics