Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

TLRN: Temporal Latent Residual Networks for Large Deformation Image Registration

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15002))

  • 1496 Accesses

Abstract

This paper presents a novel approach, termed Temporal Latent Residual Network (TLRN), to predict a sequence of deformation fields in time-series image registration. The challenge of registering time-series images often lies in the occurrence of large motions, especially when images differ significantly from a reference (e.g., the start of a cardiac cycle compared to the peak stretching phase). To achieve accurate and robust registration results, we leverage the nature of motion continuity and exploit the temporal smoothness in consecutive image frames. Our proposed TLRN highlights a temporal residual network with residual blocks carefully designed in latent deformation spaces, which are parameterized by time-sequential initial velocity fields. We treat a sequence of residual blocks over time as a dynamic training system, where each block is designed to learn the residual function between desired deformation features and current input accumulated from previous time frames. We validate the effectivenss of TLRN on both synthetic data and real-world cine cardiac magnetic resonance (CMR) image videos. Our experimental results shows that TLRN is able to achieve substantially improved registration accuracy compared to the state-of-the-art. Our code is publicly available at https://github.com/nellie689/TLRN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-euclidean framework for statistics on diffeomorphisms. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 924–931. Springer (2006)

    Google Scholar 

  2. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: An unsupervised learning model for deformable medical image registration. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 9252–9260 (2018)

    Google Scholar 

  3. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph: a learning framework for deformable medical image registration. IEEE transactions on medical imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  4. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International journal of computer vision 61(2), 139–157 (2005)

    Article  Google Scholar 

  5. Chen, J., Frey, E.C., He, Y., Segars, W.P., Li, Y., Du, Y.: Transmorph: Transformer for unsupervised medical image registration. Medical image analysis 82, 102615 (2022)

    Article  Google Scholar 

  6. Csapo, I., Holland, C.M., Guttmann, C.R.: Image registration framework for large-scale longitudinal mri data sets: strategy and validation. Magnetic Resonance Imaging 25(6), 889–893 (2007)

    Article  Google Scholar 

  7. De Craene, M., Piella, G., Camara, O., Duchateau, N., Silva, E., Doltra, A., D’hooge, J., Brugada, J., Sitges, M., Frangi, A.F.: Temporal diffeomorphic free-form deformation: Application to motion and strain estimation from 3d echocardiography. Medical image analysis 16(2), 427–450 (2012)

    Google Scholar 

  8. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  9. Geng, X., Christensen, G.E., Gu, H., Ross, T.J., Yang, Y.: Implicit reference-based group-wise image registration and its application to structural and functional mri. Neuroimage 47(4), 1341–1351 (2009)

    Article  Google Scholar 

  10. Ghanem, B., Zhang, T., Ahuja, N.: Robust video registration applied to field-sports video analysis. In: IEEE International conference on acoustics, speech, and signal processing (ICASSP). vol. 2 (2012)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 770–778 (2016)

    Google Scholar 

  12. Hinkle, J., Womble, D., Yoon, H.J.: Diffeomorphic autoencoders for lddmm atlas building (2018)

    Google Scholar 

  13. Hong, Y., Golland, P., Zhang, M.: Fast geodesic regression for population-based image analysis. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 317–325. Springer (2017)

    Google Scholar 

  14. Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using the hausdorff distance. IEEE Transactions on pattern analysis and machine intelligence 15(9), 850–863 (1993)

    Article  Google Scholar 

  15. Joshi, A., Hong, Y.: Diffeomorphic image registration using lipschitz continuous residual networks. In: International Conference on Medical Imaging with Deep Learning. pp. 605–617. PMLR (2022)

    Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  17. Krebs, J., Delingette, H., Ayache, N., Mansi, T.: Learning a generative motion model from image sequences based on a latent motion matrix. IEEE Transactions on Medical Imaging 40(5), 1405–1416 (2021)

    Article  Google Scholar 

  18. Krebs, J., Mansi, T., Ayache, N., Delingette, H.: Probabilistic motion modeling from medical image sequences: application to cardiac cine-mri. In: Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges: 10th International Workshop, STACOM 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Revised Selected Papers 10. pp. 176–185. Springer (2020)

    Google Scholar 

  19. Ledesma-Carbayo, M.J., Kybic, J., Desco, M., Santos, A., Suhling, M., Hunziker, P., Unser, M.: Spatio-temporal nonrigid registration for ultrasound cardiac motion estimation. IEEE transactions on medical imaging 24(9), 1113–1126 (2005)

    Article  Google Scholar 

  20. Liao, R., Turk, E.A., Zhang, M., Luo, J., Grant, P.E., Adalsteinsson, E., Golland, P.: Temporal registration in in-utero volumetric mri time series. In: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part III 19. pp. 54–62. Springer (2016)

    Google Scholar 

  21. Maas, A.L., Hannun, A.Y., Ng, A.Y., et al.: Rectifier nonlinearities improve neural network acoustic models. In: Proc. icml. vol. 30, p. 3. Atlanta, GA (2013)

    Google Scholar 

  22. Metz, C.T., Klein, S., Schaap, M., van Walsum, T., Niessen, W.J.: Nonrigid registration of dynamic medical imaging data using nd+ t b-splines and a groupwise optimization approach. Medical image analysis 15(2), 238–249 (2011)

    Article  Google Scholar 

  23. Morais, P., Heyde, B., Barbosa, D., Queirós, S., Claus, P., D’hooge, J.: Cardiac motion and deformation estimation from tagged mri sequences using a temporal coherent image registration framework. In: Functional Imaging and Modeling of the Heart: 7th International Conference, FIMH 2013, London, UK, June 20-22, 2013. Proceedings 7. pp. 316–324. Springer (2013)

    Google Scholar 

  24. Niethammer, M., Huang, Y., Vialard, F.X.: Geodesic regression for image time-series. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011: 14th International Conference, Toronto, Canada, September 18-22, 2011, Proceedings, Part II 14. pp. 655–662. Springer (2011)

    Google Scholar 

  25. Perperidis, D., Mohiaddin, R.H., Rueckert, D.: Spatio-temporal free-form registration of cardiac mr image sequences. Medical image analysis 9(5), 441–456 (2005)

    Article  Google Scholar 

  26. Qiao, M., Wang, S., Qiu, H., De Marvao, A., O’Regan, D.P., Rueckert, D., Bai, W.: Cheart: A conditional spatio-temporal generative model for cardiac anatomy. IEEE transactions on medical imaging (2023)

    Google Scholar 

  27. Qin, C., Wang, S., Chen, C., Bai, W., Rueckert, D.: Generative myocardial motion tracking via latent space exploration with biomechanics-informed prior. Medical Image Analysis 83, 102682 (2023)

    Article  Google Scholar 

  28. Reinhardt, J.M., Ding, K., Cao, K., Christensen, G.E., Hoffman, E.A., Bodas, S.V.: Registration-based estimates of local lung tissue expansion compared to xenon ct measures of specific ventilation. Medical image analysis 12(6), 752–763 (2008)

    Article  Google Scholar 

  29. Singh, M., Thompson, R., Basu, A., Rieger, J., Mandal, M.: Image based temporal registration of mri data for medical visualization. In: 2006 International Conference on Image Processing. pp. 1169–1172. IEEE (2006)

    Google Scholar 

  30. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Symmetric log-domain diffeomorphic registration: A demons-based approach. In: International conference on medical image computing and computer-assisted intervention. pp. 754–761. Springer (2008)

    Google Scholar 

  31. Wang, J., Zhang, M.: Deepflash: An efficient network for learning-based medical image registration. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 4444–4452 (2020)

    Google Scholar 

  32. Wu, N., Zhang, M.: Neurepdiff: Neural operators to predict geodesics in deformation spaces. In: International Conference on Information Processing in Medical Imaging. pp. 588–600. Springer (2023)

    Google Scholar 

  33. Xing, J., Wu, N., Bilchick, K., Epstein, F., Zhang, M.: Multimodal learning to improve cardiac late mechanical activation detection from cine mr images. arXiv preprint arXiv:2402.18507 (2024)

  34. Yang, Z., Dan, T., Yang, Y.: Multi-temporal remote sensing image registration using deep convolutional features. Ieee Access 6, 38544–38555 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF CAREER Grant 2239977 and NIH 1R21EB032597.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nian Wu .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, N., Xing, J., Zhang, M. (2024). TLRN: Temporal Latent Residual Networks for Large Deformation Image Registration. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15002. Springer, Cham. https://doi.org/10.1007/978-3-031-72069-7_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72069-7_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72068-0

  • Online ISBN: 978-3-031-72069-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics