Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Immune-Guided AI for Reproducible Regions of Interest Selection in Multiplex Immunofluorescence Pathology Imaging

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Selecting regions of interest (ROIs) in whole-slide histology images (WSIs) is a crucial step for spatial molecular profiling. As a general practice, pathologists manually select ROIs within each WSI based on morphological tumor markers to guide spatial profiling, which can be inconsistent and subjective. To enhance reproducibility and avoid inter-pathologist variability, we introduce a novel immune-guided end-to-end pipeline to automate the ROI selection in multiplex immunofluorescence (mIF) WSIs stained with three cell markers (Syto13, CD45, PanCK). First, we estimate immune infiltration (CD45\(^+\) expression) scores at the grid level in each WSI. Then, we incorporate the Pathology Language and Image Pre-Training (PLIP) foundational model to extract features from each grid and further select a subset of grids representative of the whole slide that comparatively matches pathologists’ assessment. Further, we implement state-of-the-art detection models for ROI detection in each grid, incorporating learning from pathologists’ ROI selection. Our study shows a significant correlation between our automated method and pathologists’ ROI selection across five different types of carcinomas, as evidenced by a significant Spearman’s correlation coefficient (> 0.785, p < 0.001), substantial inter-rater agreement (Cohen’s \(\kappa >\) 0.671), and the ability to replicate the ROI selection made by independent pathologists with excellent average performance (0.968 precision and 0.991 mean average precision at a 0.5 intersection-over-union). By minimizing manual intervention, our solution provides a flexible framework that potentially adapts to various markers, thus enhancing the efficiency and accuracy of digital pathology analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, M., Zhang, B., Topatana, W., Cao, J., Zhu, H., Juengpanich, S., Mao, Q., Yu, H., Cai, X.: Classification and mutation prediction based on histopathology H &E images in liver cancer using deep learning. npj Precision Oncology 4(1),  14 (6 2020)

    Google Scholar 

  2. Chollet, F.: Xception: Deep Learning with Depthwise Separable Convolutions (10 2016)

    Google Scholar 

  3. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (10 2020)

    Google Scholar 

  4. Gooden, M.J., de Bock, G.H., Leffers, N., Daemen, T., Nijman, H.W.: The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. British journal of cancer 105(1), 93–103 (2011)

    Article  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 770–778. IEEE (6 2016). https://doi.org/10.1109/CVPR.2016.90

  6. Hossain, M.S., Shahriar, G.M., Syeed, M.M., Uddin, M.F., Hasan, M., Shivam, S., Advani, S.: Region of interest (ROI) selection using vision transformer for automatic analysis using whole slide images. Scientific Reports 13(1) (12 2023). https://doi.org/10.1038/s41598-023-38109-6

  7. Huang, Z., Bianchi, F., Yuksekgonul, M., Montine, T.J., Zou, J.: A visual-language foundation model for pathology image analysis using medical Twitter. Nature medicine 29(9), 2307–2316 (9 2023). https://doi.org/10.1038/s41591-023-02504-3

  8. Jocher, G.: Ultralytics yolov5 (2020). https://doi.org/10.5281/zenodo.3908559, https://github.com/ultralytics/yolov5

  9. Jocher, G., Chaurasia, A., Qiu, J.: Ultralytics yolov8 (2023), https://github.com/ultralytics/ultralytics

  10. Korkut, S., Erkan, C., Aksoy, S.: On the benefits of region of interest detection for whole slide image classification. In: Tomaszewski, J.E., Ward, A.D. (eds.) Medical Imaging 2023: Digital and Computational Pathology. p. 23. SPIE (4 2023). https://doi.org/10.1117/12.2654193

  11. Li, R., Huang, J.: Fast Regions-of-Interest Detection in Whole Slide Histopathology Images. pp. 120–127 (2015). https://doi.org/10.1007/978-3-319-28194-0_15

  12. Lin, J.R., Wang, S., Coy, S., Chen, Y.A., Yapp, C., Tyler, M., Nariya, M.K., Heiser, C.N., Lau, K.S., Santagata, S., et al.: Multiplexed 3d atlas of state transitions and immune interaction in colorectal cancer. Cell 186(2), 363–381 (2023)

    Article  Google Scholar 

  13. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal Loss for Dense Object Detection (8 2017)

    Google Scholar 

  14. Nagarkar, D.B., Mercan, E., Weaver, D.L., Brunyé, T.T., Carney, P.A., Rendi, M.H., Beck, A.H., Frederick, P.D., Shapiro, L.G., Elmore, J.G.: Region of interest identification and diagnostic agreement in breast pathology (9 2016). https://doi.org/10.1038/modpathol.2016.85

  15. Nugaliyadde, A., Wong, K.W., Parry, J., Sohel, F., Laga, H., Somaratne, U.V., Yeomans, C., Foster, O.: RCNN for Region of Interest Detection in Whole Slide Images. pp. 625–632 (2020). https://doi.org/10.1007/978-3-030-63823-8_71

  16. Qaiser, T., Lee, C.Y., Vandenberghe, M., Yeh, J., Gavrielides, M.A., Hipp, J., Scott, M., Reischl, J.: Usability of deep learning and H &amp;E images predict disease outcome-emerging tool to optimize clinical trials. npj Precision Oncology 6(1),  37 (6 2022). https://doi.org/10.1038/s41698-022-00275-7

  17. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 39(6), 1137–1149 (6 2017). https://doi.org/10.1109/TPAMI.2016.2577031

  18. Salgado, R., Denkert, C., Demaria, S., Sirtaine, N., Klauschen, F., Pruneri, G., Wienert, S., Van den Eynden, G., Baehner, F.L., Pénault-Llorca, F., et al.: The evaluation of tumor-infiltrating lymphocytes (tils) in breast cancer: recommendations by an international tils working group 2014. Annals of oncology 26(2), 259–271 (2015)

    Article  Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition (9 2014)

    Google Scholar 

  20. Yu, J., Wu, Z., Mayer, A., Trevino, A., Zou, J.: A multi-granularity approach to similarity search in multiplexed immunofluorescence images (05 2024)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Patient Mosaic Project, team members listed in the Supplementary, at The University of Texas MD Anderson Cancer Center; we thank Drs. Sabitha Prabhakaran and Neus Bota for their assistance. Patient Mosaic is supported by generous philanthropic contributions from the Albert and Margaret Alkek Foundation, among others. This project is funded by the generous support of Lyda-Hill Philanthropies.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Simon P. Castillo .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 132 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gautam, T. et al. (2024). Immune-Guided AI for Reproducible Regions of Interest Selection in Multiplex Immunofluorescence Pathology Imaging. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15004. Springer, Cham. https://doi.org/10.1007/978-3-031-72083-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72083-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72082-6

  • Online ISBN: 978-3-031-72083-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics