Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Deep Learning for Cancer Prognosis Prediction Using Portrait Photos by StyleGAN Embedding

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Survival prediction for cancer patients is critical for optimal treatment selection and patient management. Current patient survival prediction methods typically extract survival information from patients’ clinical record data or biological and imaging data. In practice, experienced clinicians can have a preliminary assessment of patients’ health status based on patients’ observable physical appearances, which are mainly facial features. However, such assessment is highly subjective. In this work, the efficacy of objectively capturing and using prognostic information contained in conventional portrait photographs using deep learning for survival prediction purposes is investigated for the first time. A pre-trained StyleGAN2 model is fine-tuned on a custom dataset of our cancer patients’ photos to empower its generator with generative ability suitable for patients’ photos. The StyleGAN2 is then used to embed the photographs to its highly expressive latent space. Utilizing state-of-the-art survival analysis models and StyleGAN’s latent space embeddings, this approach predicts the overall survival for single as well as pan-cancer, achieving a C-index of 0.680 in a pan-cancer analysis, showcasing the prognostic value embedded in simple 2D facial images. In addition, thanks to StyleGAN’s interpretable latent space, our survival prediction model can be validated for relying on essential facial features, eliminating any biases from extraneous information like clothing or background. Moreover, our approach provides a novel health attribute obtained from StyleGAN’s extracted features, allowing the modification of face photographs to either a healthier or more severe illness appearance, which has significant prognostic value for patient care and societal perception, underscoring its potential important clinical value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bagnis, A., Caffo, E., Cipolli, C., De Palma, A., Farina, G., Mattarozzi, K.: Judging health care priority in emergency situations: patient facial appearance matters. Social Science & Medicine 260, 113180 (2020)

    Article  Google Scholar 

  2. Berman, J.: Modern classification of neoplasms: reconciling differences between morphologic and molecular approaches. BMC cancer 5, 1–12 (2005)

    Article  Google Scholar 

  3. Capitanio, U., Montorsi, F.: Renal cancer. The Lancet 387(10021), 894–906 (2016)

    Article  Google Scholar 

  4. Chen, J., Lu, S., Mao, Y., Tan, L., Li, G., Gao, Y., Tan, P., Huang, D., Zhang, X., Qiu, Y., et al.: An mri-based radiomics-clinical nomogram for the overall survival prediction in patients with hypopharyngeal squamous cell carcinoma: a multi-cohort study. European Radiology pp. 1–10 (2022)

    Google Scholar 

  5. Emura, T., Chen, Y.H., Chen, H.Y.: Survival prediction based on compound covariate under cox proportional hazard models. PLoS One 7(10), e47627 (2012)

    Article  Google Scholar 

  6. Gurovich, Y., Hanani, Y., Bar, O., Nadav, G., Fleischer, N., Gelbman, D., Basel-Salmon, L., Krawitz, P.M., Kamphausen, S.B., Zenker, M., et al.: Identifying facial phenotypes of genetic disorders using deep learning. Nature medicine 25(1), 60–64 (2019)

    Article  Google Scholar 

  7. Hui, D., Hess, K., Santos, R.d., Chisholm, G., Bruera, E.: A diagnostic model for impending death in cancer patients: preliminary report. Cancer 121(21), 3914–3921 (2015)

    Google Scholar 

  8. Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.: Training generative adversarial networks with limited data. Advances in neural information processing systems 33, 12104–12114 (2020)

    Google Scholar 

  9. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proc. CVPR. pp. 4401–4410 (2019)

    Google Scholar 

  10. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: Proc. CVPR. pp. 8110–8119 (2020)

    Google Scholar 

  11. Katzman, J.L., Shaham, U., Cloninger, A., Bates, J., Jiang, T., Kluger, Y.: Deepsurv: personalized treatment recommender system using a cox proportional hazards deep neural network. BMC medical research methodology 18(1), 1–12 (2018)

    Article  Google Scholar 

  12. Kidd, A.C., McGettrick, M., Tsim, S., Halligan, D.L., Bylesjo, M., Blyth, K.G.: Survival prediction in mesothelioma using a scalable lasso regression model: instructions for use and initial performance using clinical predictors. BMJ open respiratory research 5(1), e000240 (2018)

    Article  Google Scholar 

  13. Kim, D.W., Lee, S., Kwon, S., Nam, W., Cha, I.H., Kim, H.J.: Deep learning-based survival prediction of oral cancer patients. Scientific reports 9(1), 1–10 (2019)

    Google Scholar 

  14. King, D.E.: Dlib-ml: A machine learning toolkit. Journal of Machine Learning Research 10, 1755–1758 (2009)

    Google Scholar 

  15. Kong, X., Gong, S., Su, L., Howard, N., Kong, Y.: Automatic detection of acromegaly from facial photographs using machine learning methods. EBioMedicine 27, 94–102 (2018)

    Article  Google Scholar 

  16. Liang, B., Yang, N., He, G., Huang, P., Yang, Y.: Identification of the facial features of patients with cancer: a deep learning–based pilot study. Journal of Medical Internet Research 22(4), e17234 (2020)

    Google Scholar 

  17. Lin, H., Zelterman, D.: Modeling survival data: extending the cox model (2002)

    Google Scholar 

  18. Oken, M.M., Creech, R.H., Tormey, D.C., Horton, J., Davis, T.E., McFadden, E.T., Carbone, P.P.: Toxicity and response criteria of the eastern cooperative oncology group. Am. J. Clin. Oncol. 5(6), 649–656 (1982)

    Article  Google Scholar 

  19. de Oliveira, W.A.: Quality of life, facial appearance and self-esteem in patients with orthodontic treatment. Revista Mexicana de Ortodoncia 5(3), 138–139 (2017)

    Article  Google Scholar 

  20. Rankin, M., Borah, G.L.: Perceived functional impact of abnormal facial appearance. Plastic and reconstructive surgery 111(7), 2140–2146 (2003)

    Article  Google Scholar 

  21. Su, Z., Liang, B., Shi, F., Gelfond, J., Šegalo, S., Wang, J., Jia, P., Hao, X.: Deep learning-based facial image analysis in medical research: a systematic review protocol. BMJ open 11(11), e047549 (2021)

    Article  Google Scholar 

  22. van Timmeren, J.E., Leijenaar, R.T., van Elmpt, W., Reymen, B., Oberije, C., Monshouwer, R., Bussink, J., Brink, C., Hansen, O., Lambin, P.: Survival prediction of non-small cell lung cancer patients using radiomics analyses of cone-beam ct images. Radiotherapy and Oncology 123(3), 363–369 (2017)

    Article  Google Scholar 

  23. Vale-Silva, L.A., Rohr, K.: Long-term cancer survival prediction using multimodal deep learning. Scientific Reports 11(1), 1–12 (2021)

    Article  Google Scholar 

  24. Wallis, D., Buvat, I.: Clever hans effect found in a widely used brain tumour mri dataset. Medical Image Analysis 77, 102368 (2022)

    Article  Google Scholar 

  25. Wang, D., Jing, Z., He, K., Garmire, L.X.: Cox-nnet v2. 0: improved neural-network-based survival prediction extended to large-scale emr data. Bioinformatics 37(17), 2772–2774 (2021)

    Google Scholar 

  26. Wankhede, D.S., Rangasamy, S.: Dynamic architecture based deep learning approach for glioblastoma brain tumor survival prediction. Neuroscience Informatics p. 100062 (2022)

    Google Scholar 

  27. Withington, E., Lonie, I., Chadwick, J., Mann, W.N., Lloyd, G., et al.: Hippocratic writings. Penguin UK (2005)

    Google Scholar 

  28. Yolcu, G., Oztel, I., Kazan, S., Oz, C., Palaniappan, K., Lever, T.E., Bunyak, F.: Deep learning-based facial expression recognition for monitoring neurological disorders. In: 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). pp. 1652–1657. IEEE (2017)

    Google Scholar 

  29. Zhu, X., Yao, J., Huang, J.: Deep convolutional neural network for survival analysis with pathological images. In: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). pp. 544–547. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixing Huang .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no conflict of interest to declare for this work.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 100643 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hagag, A. et al. (2024). Deep Learning for Cancer Prognosis Prediction Using Portrait Photos by StyleGAN Embedding. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15005. Springer, Cham. https://doi.org/10.1007/978-3-031-72086-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72086-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72085-7

  • Online ISBN: 978-3-031-72086-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics