Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Iterative Online Image Synthesis via Diffusion Model for Imbalanced Classification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15005))

  • 1290 Accesses

Abstract

Accurate and robust classification of diseases is important for proper diagnosis and treatment. However, medical datasets often face challenges related to limited sample sizes and inherent imbalanced distributions, due to difficulties in data collection and variations in disease prevalence across different types. In this paper, we introduce an Iterative Online Image Synthesis (IOIS) framework to address the class imbalance problem in medical image classification. Our framework incorporates two key modules, namely Online Image Synthesis (OIS) and Accuracy Adaptive Sampling (AAS), which collectively target the imbalance classification issue at both the instance level and the class level. The OIS module alleviates the data insufficiency problem by generating representative samples tailored for online training of the classifier. On the other hand, the AAS module dynamically balances the synthesized samples among various classes, targeting those with low training accuracy. To evaluate the effectiveness of our proposed method in addressing imbalanced classification, we conduct experiments on the HAM10000 and APTOS datasets. The results obtained demonstrate the superiority of our approach over state-of-the-art methods as well as the effectiveness of each component. The source code is available at https://github.com/ustlsh/IOIS_imbalance.

S. Li and Y. Lin—Equal contribution

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baccouche, A., Garcia-Zapirain, B., Castillo Olea, C., Elmaghraby, A.: Ensemble deep learning models for heart disease classification: A case study from mexico. Information 11(4),  207 (2020)

    Article  Google Scholar 

  2. Banik, D., Bhattacharjee, D.: Mitigating data imbalance issues in medical image analysis. In: Data preprocessing, active learning, and cost perceptive approaches for resolving data imbalance, pp. 66–89. IGI Global (2021)

    Google Scholar 

  3. Carrasco Limeros, S., Majchrowska, S., Zoubi, M.K., Rosén, A., Suvilehto, J., Sjöblom, L., Kjellberg, M.: Assessing gan-based generative modeling on skin lesions images. In: Machine Intelligence and Digital Interaction Conference. pp. 93–102. Springer Nature Switzerland Cham (2022)

    Google Scholar 

  4. Cui, W., Peng, Y., Yuan, G., Cao, W., Cao, Y., Lu, Z., Ni, X., Yan, Z., Zheng, J.: Fmrnet: A fused network of multiple tumoral regions for breast tumor classification with ultrasound images. Medical Physics 49(1), 144–157 (2022)

    Article  Google Scholar 

  5. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 9268–9277 (2019)

    Google Scholar 

  6. Dhariwal, P., Nichol, A.: Diffusion models beat gans on image synthesis. Advances in neural information processing systems 34, 8780–8794 (2021)

    Google Scholar 

  7. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems 33, 6840–6851 (2020)

    Google Scholar 

  8. Kang, B., Xie, S., Rohrbach, M., Yan, Z., Gordo, A., Feng, J., Kalantidis, Y.: Decoupling representation and classifier for long-tailed recognition. arXiv preprint arXiv:1910.09217 (2019)

  9. Karthik, Maggie, S.D.: Aptos 2019 blindness detection (2019), https://kaggle.com/competitions/aptos2019-blindness-detection

  10. Kebaili, A., Lapuyade-Lahorgue, J., Ruan, S.: Deep learning approaches for data augmentation in medical imaging: a review. Journal of Imaging 9(4),  81 (2023)

    Article  Google Scholar 

  11. Li, J., Cao, H., Wang, J., Liu, F., Dou, Q., Chen, G., Heng, P.A.: Learning robust classifier for imbalanced medical image dataset with noisy labels by minimizing invariant risk. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 306–316. Springer (2023)

    Google Scholar 

  12. Li, J., Chen, G., Mao, H., Deng, D., Li, D., Hao, J., Dou, Q., Heng, P.A.: Flat-aware cross-stage distilled framework for imbalanced medical image classification. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 217–226. Springer (2022)

    Google Scholar 

  13. Li, S., Li, X., Xu, X., Cheng, K.T.: Dynamic subcluster-aware network for few-shot skin disease classification. IEEE Transactions on Neural Networks and Learning Systems (2023)

    Google Scholar 

  14. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision. pp. 2980–2988 (2017)

    Google Scholar 

  15. Lin, Y., Liu, L., Ma, K., Zheng, Y.: Seg4reg+: Consistency learning between spine segmentation and cobb angle regression. In: International conference on medical image computing and computer-assisted intervention. pp. 490–499. Springer (2021)

    Google Scholar 

  16. Lin, Y., Liu, Y., Chen, H., Yang, X., Ma, K., Zheng, Y., Cheng, K.T.: Lenas: Learning-based neural architecture search and ensemble for 3-d radiotherapy dose prediction. IEEE Transactions on Cybernetics (2024)

    Google Scholar 

  17. Lin, Y., Su, J., Wang, X., Li, X., Liu, J., Cheng, K.T., Yang, X.: Automated pulmonary embolism detection from ctpa images using an end-to-end convolutional neural network. In: International conference on medical image computing and computer-assisted intervention. pp. 280–288. Springer (2019)

    Google Scholar 

  18. Lin, Y., Wang, Z., Cheng, K.T., Chen, H.: Insmix: towards realistic generative data augmentation for nuclei instance segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 140–149. Springer (2022)

    Google Scholar 

  19. Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri, M., Li, Y., Bharambe, A., Van Der Maaten, L.: Exploring the limits of weakly supervised pretraining. In: Proceedings of the European conference on computer vision (ECCV). pp. 181–196 (2018)

    Google Scholar 

  20. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 10684–10695 (2022)

    Google Scholar 

  21. Shen, Z., Cao, M., Wang, S., Zhang, L., Wang, Q.: Cellgan: Conditional cervical cell synthesis for augmenting cytopathological image classification. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 487–496. Springer (2023)

    Google Scholar 

  22. Tan, J., Lu, X., Zhang, G., Yin, C., Li, Q.: Equalization loss v2: A new gradient balance approach for long-tailed object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 1685–1694 (2021)

    Google Scholar 

  23. Tan, J., Wang, C., Li, B., Li, Q., Ouyang, W., Yin, C., Yan, J.: Equalization loss for long-tailed object recognition. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 11662–11671 (2020)

    Google Scholar 

  24. Tang, Z., Gao, Y., Karlinsky, L., Sattigeri, P., Feris, R., Metaxas, D.: Onlineaugment: Online data augmentation with less domain knowledge. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VII 16. pp. 313–329. Springer (2020)

    Google Scholar 

  25. Tschandl, P., Rosendahl, C., Kittler, H.: The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific data 5(1),  1–9 (2018)

    Article  Google Scholar 

  26. Wang, X., Han, Y., Sun, G., Yang, F., Liu, W., Luo, J., Cao, X., Yin, P., Myers, F.L., Zhou, L.: Detection of the microvascular changes of diabetic retinopathy progression using optical coherence tomography angiography. Translational vision science & technology 10(7), 31–31 (2021)

    Article  Google Scholar 

  27. Yan, R., Ren, F., Li, J., Rao, X., Lv, Z., Zheng, C., Zhang, F.: Nuclei-guided network for breast cancer grading in he-stained pathological images. Sensors 22(11),  4061 (2022)

    Article  Google Scholar 

  28. Yang, X., Lin, Y., Wang, Z., Li, X., Cheng, K.T.: Bi-modality medical image synthesis using semi-supervised sequential generative adversarial networks. IEEE journal of biomedical and health informatics 24(3), 855–865 (2019)

    Article  Google Scholar 

  29. Ye, J., Ni, H., Jin, P., Huang, S.X., Xue, Y.: Synthetic augmentation with large-scale unconditional pre-training. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 754–764. Springer (2023)

    Google Scholar 

  30. Zhong, Y., Cui, S., Wang, J., Wang, X., Yin, Z., Wang, Y., Xiao, H., Huai, M., Wang, T., Ma, F.: Meddiffusion: Boosting health risk prediction via diffusion-based data augmentation. arXiv preprint arXiv:2310.02520 (2023)

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China/HKSAR Research Grants Council Joint Research Scheme under Grant N_HKUST627/20 and by Nanhai People’s Government of Foshan under Project FSNH 22EG05/RG203.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhan Li .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, S., Lin, Y., Chen, H., Cheng, KT. (2024). Iterative Online Image Synthesis via Diffusion Model for Imbalanced Classification. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15005. Springer, Cham. https://doi.org/10.1007/978-3-031-72086-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72086-4_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72085-7

  • Online ISBN: 978-3-031-72086-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics