Abstract
Right Heart Catheterization is a gold standard procedure for diagnosing Pulmonary Hypertension by measuring mean Pulmonary Artery Pressure (mPAP). It is invasive, costly, time-consuming and carries risks. In this paper, for the first time, we explore the estimation of mPAP from videos of noninvasive Cardiac Magnetic Resonance Imaging. To enhance the predictive capabilities of Deep Learning models used for this task, we introduce an additional modality in the form of demographic features and clinical measurements. Inspired by all-Multilayer Perceptron architectures, we present TabMixer, a novel module enabling the integration of imaging and tabular data through spatial, temporal and channel mixing. Specifically, we present the first approach that utilizes Multilayer Perceptrons to interchange tabular information with imaging features in vision models. We test TabMixer for mPAP estimation and show that it enhances the performance of Convolutional Neural Networks, 3D-MLP and Vision Transformers while being competitive with previous modules for imaging and tabular data. Our approach has the potential to improve clinical processes involving both modalities, particularly in noninvasive mPAP estimation, thus, significantly enhancing the quality of life for individuals affected by Pulmonary Hypertension. We provide a source code for using TabMixer at https://github.com/SanoScience/TabMixer.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alabed, S., Alandejani, F., Dwivedi, K., Karunasaagarar, K., Sharkey, M., Garg, P., de Koning, P.J., Tóth, A., Shahin, Y., Johns, C., et al.: Validation of artificial intelligence cardiac mri measurements: relationship to heart catheterization and mortality prediction. Radiology 305(1), 68–79 (2022)
Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: Vivit: A video vision transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). pp. 6836–6846 (October 2021)
Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6299–6308 (2017)
Chen, K.Y., Chiang, P.H., Chou, H.R., Chen, T.W., Chang, T.H.: Trompt: Towards a better deep neural network for tabular data. arXiv preprint arXiv:2305.18446 (2023)
Chen, S., Xie, E., GE, C., Chen, R., Liang, D., Luo, P.: CycleMLP: A MLP-like architecture for dense prediction. In: International Conference on Learning Representations (2022)
Chen, T., Guestrin, C.: XGBoost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 785–794. KDD ’16, ACM, New York, NY, USA (2016). https://doi.org/10.1145/2939672.2939785
Duanmu, H., Huang, P.B., Brahmavar, S., Lin, S., Ren, T., Kong, J., Wang, F., Duong, T.Q.: Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using deep learning with integrative imaging, molecular and demographic data. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part II 23. pp. 242–252. Springer (2020)
Gorishniy, Y., Rubachev, I., Khrulkov, V., Babenko, A.: Revisiting deep learning models for tabular data. Advances in Neural Information Processing Systems 34, 18932–18943 (2021)
Grzeszczyk, M.K., Satława, T., Lungu, A., Swift, A., Narracott, A., Hose, R., Trzcinski, T., Sitek, A.: Noninvasive estimation of mean pulmonary artery pressure using mri, computer models, and machine learning. In: International Conference on Computational Science. pp. 14–27. Springer (2022)
Grzeszczyk, M.K., et al.: Tabattention: Learning attention conditionally on tabular data. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 347–357. Springer (2023)
Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415 (2016)
Hoeper, M.M., et al.: Pulmonary hypertension. Dtsch Arztebl Int 114, 73–84 (2017). 10.3238/arztebl.2017.0073
Holste, G., Partridge, S.C., Rahbar, H., Biswas, D., Lee, C.I., Alessio, A.M.: End-to-end learning of fused image and non-image features for improved breast cancer classification from mri. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 3294–3303 (2021)
Huang, L., Li, J., Huang, M., Zhuang, J., Yuan, H., Jia, Q., Zeng, D., Que, L., Xi, Y., Lin, J., Dong, Y.: Prediction of pulmonary pressure after glenn shunts by computed tomography-based machine learning models. European Radiology 30, 1369–1377 (2020). https://doi.org/10.1007/s00330-019-06502-3
Hurdman, J., Condliffe, R., Elliot, C., Davies, C., Hill, C., et al.: Aspire registry: Assessing the spectrum of pulmonary hypertension identified at a referral centre. European Respiratory Journal 39, 945–955 (4 2012). https://doi.org/10.1183/09031936.00078411
Leha, A., Hellenkamp, K., Unsöld, B., Mushemi-Blake, S., Shah, A.M., Hasenfuß, G., Seidler, T.: A machine learning approach for the prediction of pulmonary hypertension. PLoS ONE 14 (10 2019). https://doi.org/10.1371/journal.pone.0224453
Liu, Z., Ning, J., Cao, Y., Wei, Y., Zhang, Z., Lin, S., Hu, H.: Video swin transformer. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 3202–3211 (2022)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)
Lungu, A., Swift, A.J., Capener, D., Kiely, D., Hose, R., Wild, J.M.: Diagnosis of pulmonary hypertension from magnetic resonance imaging-based computational models and decision tree analysis. Pulmonary Circulation 6, 181–190 (6 2016). https://doi.org/10.1086/686020
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)
Perez, E., Strub, F., De Vries, H., Dumoulin, V., Courville, A.: Film: Visual reasoning with a general conditioning layer. In: Proceedings of the AAAI conference on artificial intelligence. vol. 32 (2018)
Pölsterl, S., Wolf, T.N., Wachinger, C.: Combining 3d image and tabular data via the dynamic affine feature map transform. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part V 24. pp. 688–698. Springer (2021)
Qiu, Z., Yao, T., Ngo, C.W., Mei, T.: Mlp-3d: A mlp-like 3d architecture with grouped time mixing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3062–3072 (2022)
Reiter, U., Kovacs, G., Reiter, C., Kräuter, C., Nizhnikava, V., Fuchsjäger, M., Olschewski, H., Reiter, G.: Mr 4d flow-based mean pulmonary arterial pressure tracking in pulmonary hypertension. European Radiology 31, 1883–1893 (2021)
Shwartz-Ziv, R., Armon, A.: Tabular data: Deep learning is not all you need. Information Fusion 81, 84–90 (2022)
Tolstikhin, I.O., et al.: Mlp-mixer: An all-mlp architecture for vision. Advances in neural information processing systems 34, 24261–24272 (2021)
Touvron, H., et al.: Resmlp: Feedforward networks for image classification with data-efficient training. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(4), 5314–5321 (2022)
Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. pp. 6450–6459 (2018)
Yu, W., Luo, M., Zhou, P., Si, C., Zhou, Y., Wang, X., Feng, J., Yan, S.: Metaformer is actually what you need for vision. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 10819–10829 (2022)
Acknowledgments
This research was funded in whole or in part by National Science Centre, Poland 2023/49/N/ST6/01841. For the purpose of Open Access, the author has applied a CC-BY public copyright licence to any Author Accepted Manuscript (AAM) version arising from this submission. This work is supported by the EU’s Horizon 2020 programme (grant no. 857533, Sano) and the Foundation for Polish Science’s International Research Agendas programme, co-financed by the EU under the European Regional Development Fund and the Polish Ministry of Science and Higher Education (contract no. MEiN/2023/DIR/3796).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no conflicts of interest to declare.
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Grzeszczyk, M.K., Korzeniowski, P., Alabed, S., Swift, A.J., Trzciński, T., Sitek, A. (2024). TabMixer: Noninvasive Estimation of the Mean Pulmonary Artery Pressure via Imaging and Tabular Data Mixing. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15005. Springer, Cham. https://doi.org/10.1007/978-3-031-72086-4_63
Download citation
DOI: https://doi.org/10.1007/978-3-031-72086-4_63
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72085-7
Online ISBN: 978-3-031-72086-4
eBook Packages: Computer ScienceComputer Science (R0)