Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

TabMixer: Noninvasive Estimation of the Mean Pulmonary Artery Pressure via Imaging and Tabular Data Mixing

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Right Heart Catheterization is a gold standard procedure for diagnosing Pulmonary Hypertension by measuring mean Pulmonary Artery Pressure (mPAP). It is invasive, costly, time-consuming and carries risks. In this paper, for the first time, we explore the estimation of mPAP from videos of noninvasive Cardiac Magnetic Resonance Imaging. To enhance the predictive capabilities of Deep Learning models used for this task, we introduce an additional modality in the form of demographic features and clinical measurements. Inspired by all-Multilayer Perceptron architectures, we present TabMixer, a novel module enabling the integration of imaging and tabular data through spatial, temporal and channel mixing. Specifically, we present the first approach that utilizes Multilayer Perceptrons to interchange tabular information with imaging features in vision models. We test TabMixer for mPAP estimation and show that it enhances the performance of Convolutional Neural Networks, 3D-MLP and Vision Transformers while being competitive with previous modules for imaging and tabular data. Our approach has the potential to improve clinical processes involving both modalities, particularly in noninvasive mPAP estimation, thus, significantly enhancing the quality of life for individuals affected by Pulmonary Hypertension. We provide a source code for using TabMixer at https://github.com/SanoScience/TabMixer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alabed, S., Alandejani, F., Dwivedi, K., Karunasaagarar, K., Sharkey, M., Garg, P., de Koning, P.J., Tóth, A., Shahin, Y., Johns, C., et al.: Validation of artificial intelligence cardiac mri measurements: relationship to heart catheterization and mortality prediction. Radiology 305(1), 68–79 (2022)

    Article  Google Scholar 

  2. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: Vivit: A video vision transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). pp. 6836–6846 (October 2021)

    Google Scholar 

  3. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6299–6308 (2017)

    Google Scholar 

  4. Chen, K.Y., Chiang, P.H., Chou, H.R., Chen, T.W., Chang, T.H.: Trompt: Towards a better deep neural network for tabular data. arXiv preprint arXiv:2305.18446 (2023)

  5. Chen, S., Xie, E., GE, C., Chen, R., Liang, D., Luo, P.: CycleMLP: A MLP-like architecture for dense prediction. In: International Conference on Learning Representations (2022)

    Google Scholar 

  6. Chen, T., Guestrin, C.: XGBoost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 785–794. KDD ’16, ACM, New York, NY, USA (2016). https://doi.org/10.1145/2939672.2939785

  7. Duanmu, H., Huang, P.B., Brahmavar, S., Lin, S., Ren, T., Kong, J., Wang, F., Duong, T.Q.: Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using deep learning with integrative imaging, molecular and demographic data. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part II 23. pp. 242–252. Springer (2020)

    Google Scholar 

  8. Gorishniy, Y., Rubachev, I., Khrulkov, V., Babenko, A.: Revisiting deep learning models for tabular data. Advances in Neural Information Processing Systems 34, 18932–18943 (2021)

    Google Scholar 

  9. Grzeszczyk, M.K., Satława, T., Lungu, A., Swift, A., Narracott, A., Hose, R., Trzcinski, T., Sitek, A.: Noninvasive estimation of mean pulmonary artery pressure using mri, computer models, and machine learning. In: International Conference on Computational Science. pp. 14–27. Springer (2022)

    Google Scholar 

  10. Grzeszczyk, M.K., et al.: Tabattention: Learning attention conditionally on tabular data. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 347–357. Springer (2023)

    Google Scholar 

  11. Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415 (2016)

  12. Hoeper, M.M., et al.: Pulmonary hypertension. Dtsch Arztebl Int 114, 73–84 (2017). 10.3238/arztebl.2017.0073

    Article  Google Scholar 

  13. Holste, G., Partridge, S.C., Rahbar, H., Biswas, D., Lee, C.I., Alessio, A.M.: End-to-end learning of fused image and non-image features for improved breast cancer classification from mri. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 3294–3303 (2021)

    Google Scholar 

  14. Huang, L., Li, J., Huang, M., Zhuang, J., Yuan, H., Jia, Q., Zeng, D., Que, L., Xi, Y., Lin, J., Dong, Y.: Prediction of pulmonary pressure after glenn shunts by computed tomography-based machine learning models. European Radiology 30, 1369–1377 (2020). https://doi.org/10.1007/s00330-019-06502-3

    Article  Google Scholar 

  15. Hurdman, J., Condliffe, R., Elliot, C., Davies, C., Hill, C., et al.: Aspire registry: Assessing the spectrum of pulmonary hypertension identified at a referral centre. European Respiratory Journal 39, 945–955 (4 2012). https://doi.org/10.1183/09031936.00078411

  16. Leha, A., Hellenkamp, K., Unsöld, B., Mushemi-Blake, S., Shah, A.M., Hasenfuß, G., Seidler, T.: A machine learning approach for the prediction of pulmonary hypertension. PLoS ONE 14 (10 2019). https://doi.org/10.1371/journal.pone.0224453

  17. Liu, Z., Ning, J., Cao, Y., Wei, Y., Zhang, Z., Lin, S., Hu, H.: Video swin transformer. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 3202–3211 (2022)

    Google Scholar 

  18. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  19. Lungu, A., Swift, A.J., Capener, D., Kiely, D., Hose, R., Wild, J.M.: Diagnosis of pulmonary hypertension from magnetic resonance imaging-based computational models and decision tree analysis. Pulmonary Circulation 6, 181–190 (6 2016). https://doi.org/10.1086/686020

  20. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

    MathSciNet  Google Scholar 

  21. Perez, E., Strub, F., De Vries, H., Dumoulin, V., Courville, A.: Film: Visual reasoning with a general conditioning layer. In: Proceedings of the AAAI conference on artificial intelligence. vol. 32 (2018)

    Google Scholar 

  22. Pölsterl, S., Wolf, T.N., Wachinger, C.: Combining 3d image and tabular data via the dynamic affine feature map transform. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part V 24. pp. 688–698. Springer (2021)

    Google Scholar 

  23. Qiu, Z., Yao, T., Ngo, C.W., Mei, T.: Mlp-3d: A mlp-like 3d architecture with grouped time mixing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3062–3072 (2022)

    Google Scholar 

  24. Reiter, U., Kovacs, G., Reiter, C., Kräuter, C., Nizhnikava, V., Fuchsjäger, M., Olschewski, H., Reiter, G.: Mr 4d flow-based mean pulmonary arterial pressure tracking in pulmonary hypertension. European Radiology 31, 1883–1893 (2021)

    Article  Google Scholar 

  25. Shwartz-Ziv, R., Armon, A.: Tabular data: Deep learning is not all you need. Information Fusion 81, 84–90 (2022)

    Article  Google Scholar 

  26. Tolstikhin, I.O., et al.: Mlp-mixer: An all-mlp architecture for vision. Advances in neural information processing systems 34, 24261–24272 (2021)

    Google Scholar 

  27. Touvron, H., et al.: Resmlp: Feedforward networks for image classification with data-efficient training. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(4), 5314–5321 (2022)

    Article  Google Scholar 

  28. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. pp. 6450–6459 (2018)

    Google Scholar 

  29. Yu, W., Luo, M., Zhou, P., Si, C., Zhou, Y., Wang, X., Feng, J., Yan, S.: Metaformer is actually what you need for vision. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 10819–10829 (2022)

    Google Scholar 

Download references

Acknowledgments

This research was funded in whole or in part by National Science Centre, Poland 2023/49/N/ST6/01841. For the purpose of Open Access, the author has applied a CC-BY public copyright licence to any Author Accepted Manuscript (AAM) version arising from this submission. This work is supported by the EU’s Horizon 2020 programme (grant no. 857533, Sano) and the Foundation for Polish Science’s International Research Agendas programme, co-financed by the EU under the European Regional Development Fund and the Polish Ministry of Science and Higher Education (contract no. MEiN/2023/DIR/3796).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal K. Grzeszczyk .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no conflicts of interest to declare.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 96 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grzeszczyk, M.K., Korzeniowski, P., Alabed, S., Swift, A.J., Trzciński, T., Sitek, A. (2024). TabMixer: Noninvasive Estimation of the Mean Pulmonary Artery Pressure via Imaging and Tabular Data Mixing. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15005. Springer, Cham. https://doi.org/10.1007/978-3-031-72086-4_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72086-4_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72085-7

  • Online ISBN: 978-3-031-72086-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics