Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Vision-Based Neurosurgical Guidance: Unsupervised Localization and Camera-Pose Prediction

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Localizing oneself during endoscopic procedures can be problematic due to the lack of distinguishable textures and landmarks, as well as difficulties due to the endoscopic device such as a limited field of view and challenging lighting conditions. Expert knowledge shaped by years of experience is required for localization within the human body during endoscopic procedures. In this work, we present a deep learning method based on anatomy recognition, that constructs a surgical path in an unsupervised manner from surgical videos, modelling relative location and variations due to different viewing angles. At inference time, the model can map unseen video frames on the path and estimate the viewing angle, aiming to provide guidance, for instance, to reach a particular destination. We test the method on a dataset consisting of surgical videos of pituitary surgery, i.e. transsphenoidal adenomectomy, as well as on a synthetic dataset. An online tool that lets researchers upload their surgical videos to obtain anatomy detections and the weights of the trained YOLOv7 model are available at: https://surgicalvision.bmic.ethz.ch.

This work funded by the SNSF (Project IZKSZ3_218786).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Härtl, R., Lam, K.S., Wang, J., Korge, A., Kandziora, F., Audigé, L.: Worldwide survey on the use of navigation in spine surgery. World neurosurgery 79(1), 162–172 (1 2013)

    Google Scholar 

  2. Orringer, D.A., Golby, A., Jolesz, F.: Neuronavigation in the surgical management of brain tumors: current and future trends. Expert review of medical devices 9(5), 491–500 (9 2012)

    Google Scholar 

  3. Iversen, D.H., Wein, W., Lindseth, F., Unsgård, G., Reinertsen, I.: Automatic Intraoperative Correction of Brain Shift for Accurate Neuronavigation. World neurosurgery 120, e1071–e1078 (12 2018)

    Google Scholar 

  4. Berkmann, S., Schlaffer, S., Nimsky, C., Fahlbusch, R., Buchfelder, M.: Intraoperative high-field MRI for transsphenoidal reoperations of nonfunctioning pituitary adenoma. Journal of neurosurgery 121(5), 1166–1175 (11 2014)

    Google Scholar 

  5. Staartjes, V.E., Volokitin, A., Regli, L., Konukoglu, E., Serra, C.: Machine Vision for Real-Time Intraoperative Anatomic Guidance: A Proof-of-Concept Study in Endoscopic Pituitary Surgery. Operative neurosurgery (Hagerstown, Md.) 21(4), 242–247 (10 2021)

    Google Scholar 

  6. Burkhardt, J.K., Serra, C., Neidert, M.C., Woernle, C.M., Fierstra, J., Regli, L., Bozinov, O.: High-frequency intra-operative ultrasound-guided surgery of superficial intra-cerebral lesions via a single-burr-hole approach. Ultrasound in medicine & biology 40(7), 1469–1475 (2014)

    Article  Google Scholar 

  7. Ulrich, N.H., Burkhardt, J.K., Serra, C., Bernays, R.L., Bozinov, O.: Resection of pediatric intracerebral tumors with the aid of intraoperative real-time 3-D ultrasound. Child’s nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery 28(1), 101–109 (1 2012)

    Google Scholar 

  8. Stummer, W., Stepp, H., Wiestler, O.D., Pichlmeier, U.: Randomized, Prospective Double-Blinded Study Comparing 3 Different Doses of 5-Aminolevulinic Acid for Fluorescence-Guided Resections of Malignant Gliomas. Neurosurgery 81(2), 230–239 (8 2017)

    Google Scholar 

  9. Hadjipanayis, C.G., Widhalm, G., Stummer, W.: What is the Surgical Benefit of Utilizing 5-Aminolevulinic Acid for Fluorescence-Guided Surgery of Malignant Gliomas? Neurosurgery 77(5), 663–673 (8 2015)

    Google Scholar 

  10. Hervey-Jumper, S.L., Li, J., Lau, D., Molinaro, A.M., Perry, D.W., Meng, L., Berger, M.S.: Awake craniotomy to maximize glioma resection: methods and technical nuances over a 27-year period. Journal of neurosurgery 123(2), 325–339 (8 2015)

    Google Scholar 

  11. De Witt Hamer, P.C., Robles, S.G., Zwinderman, A.H., Duffau, H., Berger, M.S.: Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 30(20), 2559–2565 (7 2012)

    Google Scholar 

  12. Sanai, N., Mirzadeh, Z., Berger, M.S.: Functional outcome after language mapping for glioma resection. The New England journal of medicine 358(1), 18–27 (1 2008)

    Google Scholar 

  13. Staartjes, V.E., Stumpo, V., Kernbach, J.M., Klukowska, A.M., Gadjradj, P.S., Schröder, M.L., Veeravagu, A., Stienen, M.N., van Niftrik, C.H., Serra, C., Regli, L.: Machine learning in neurosurgery: a global survey. Acta Neurochirurgica 162(12), 3081–3091 (12 2020)

    Google Scholar 

  14. Grasa, O.G., Civera, J., Montiel, J.M.: EKF monocular SLAM with relocalization for laparoscopic sequences. Proceedings - IEEE International Conference on Robotics and Automation pp. 4816–4821 (2011)

    Google Scholar 

  15. Ozyoruk, K.B., Gokceler, G.I., Bobrow, T.L., Coskun, G., Incetan, K., Almalioglu, Y., Mahmood, F., Curto, E., Perdigoto, L., Oliveira, M., Sahin, H., Araujo, H., Alexandrino, H., Durr, N.J., Gilbert, H.B., Turan, M.: EndoSLAM dataset and an unsupervised monocular visual odometry and depth estimation approach for endoscopic videos. Medical Image Analysis 71, 102058 (7 2021)

    Google Scholar 

  16. Mahmoud, N., Cirauqui, I., Hostettler, A., Doignon, C., Soler, L., Marescaux, J., Montiel, J.M.: ORBSLAM-based Endoscope Tracking and 3D Reconstruction. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 10170 LNCS, 72–83 (8 2016)

    Google Scholar 

  17. Leonard, S., Sinha, A., Reiter, A., Ishii, M., Gallia, G.L., Taylor, R.H., Hager, G.D.: Evaluation and Stability Analysis of Video-Based Navigation System for Functional Endoscopic Sinus Surgery on In Vivo Clinical Data. IEEE Transactions on Medical Imaging 37(10), 2185–2195 (10 2018)

    Google Scholar 

  18. Sarwin, G., Carretta, A., Staartjes, V., Zoli, M., Mazzatenta, D., Regli, L., Serra, C., Konukoglu, E.: Live image-based neurosurgical guidance and roadmap generation using unsupervised embedding. Information Processing in Medical Imaging. IPMI 2023. Lecture Notes in Computer Science, 13939, 107–118 (06 2023)

    Google Scholar 

  19. Das, A., Khan, D.Z., Williams, S.C., Hanrahan, J.G., Borg, A., Dorward, N.L., Bano, S., Marcus, H.J. and Stoyanov, D.: A Multi-task Network for Anatomy Identification in Endoscopic Pituitary Surgery. Medical Image Computing and Computer Assisted Intervention - MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, 14228, 472–482 (10 2023)

    Google Scholar 

  20. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors (7 2022)

    Google Scholar 

  21. Community, B. O. (2018). Blender - a 3D modelling and rendering package. Stichting Blender Foundation, Amsterdam. Retrieved from http://www.blender.org

  22. Loshchilov, I., Hutter, F.: Decoupled Weight Decay Regularization. 7th International Conference on Learning Representations, ICLR 2019 (11 2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Sarwin .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sarwin, G. et al. (2024). Vision-Based Neurosurgical Guidance: Unsupervised Localization and Camera-Pose Prediction. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15006. Springer, Cham. https://doi.org/10.1007/978-3-031-72089-5_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72089-5_69

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72088-8

  • Online ISBN: 978-3-031-72089-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics