Abstract
The purpose of this study is to improve Unsupervised Domain Adaptation (UDA) by utilizing intermediate image distributions from the source domain to the target-like domain during the image generation process. However, image generators like Generative Adversarial Networks (GANs) can be regarded as black boxes due to their complex internal workings, and we can only access the final generated image. This limitation makes them unable for UDA to use the available knowledge of the intermediate distribution produced in the generation process when executing domain alignment. To address this problem, we propose a novel UDA framework that utilizes diffusion models to capture and transfer an amount of inter-domain knowledge, thereby mitigating the domain shift problem. A coupled structure-preserved diffusion model is designed to synthesize intermediate images in multiple steps, making the intermediate image distributions accessible. A stochastic step alignment strategy is further developed to align feature distributions, resulting in improved adaptation ability. The effectiveness of the proposed method is demonstrated through experiments on abdominal multi-organ segmentation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alderson, P., Martin, E.: Pulmonary embolism: diagnosis with multiple imaging modalities. Radiology 164(2), 297–312 (1987)
Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Lechevallier, Y., Saporta, G. (eds.) Proceedings of COMPSTAT’2010, pp. 177–186. Springer (2010). https://doi.org/10.1007/978-3-7908-2604-3_16
Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation. IEEE Trans. Med. Imaging 39(7), 2494–2505 (2020)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
Choi, J., Kim, S., Jeong, Y., Gwon, Y., Yoon, S.: ILVR: conditioning method for denoising diffusion probabilistic models. arXiv preprint arXiv:2108.02938 (2021)
Ghafoorian, M., et al.: Transfer learning for domain adaptation in MRI: application in brain lesion segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017, Part III. LNCS, vol. 10435, pp. 516–524. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_59
Gibson, E., et al.: Inter-site variability in prostate segmentation accuracy using deep learning. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018, Part Iv. LNCS, vol. 11073, pp. 506–514. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_58
He, K., Cao, X., Shi, Y., Nie, D., Gao, Y., Shen, D.: Pelvic organ segmentation using distinctive curve guided fully convolutional networks. IEEE Trans. Med. Imaging 38(2), 585–595 (2018)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)
Hoffman, J., et al.: Cycada: cycle-consistent adversarial domain adaptation. In: International Conference on Machine Learning, pp. 1989–1998 (2018)
Hu, T., Sun, S., Zhao, J., Shi, D.: Enhancing unsupervised domain adaptation via semantic similarity constraint for medical image segmentation. IJCAI (2022)
Kavur, A.E., et al.: Chaos challenge-combined (CT-MR) healthy abdominal organ segmentation. Med. Image Anal. 69, 101950 (2021)
Kim, K., Ye, J.C.: Noise2score: Tweedie’s approach to self-supervised image denoising without clean images. Adv. Neural. Inf. Process. Syst. 34, 864–874 (2021)
Landman, B., Xu, Z., Igelsias, J., Styner, M., Langerak, T., Klein, A.: MICCAI multi-atlas labeling beyond the cranial vault–workshop and challenge. In: Proceedings of the MICCAI Multi-Atlas Labeling Beyond Cranial Vault-Workshop Challenge. vol. 5, p. 12 (2015)
Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learning from simulated and unsupervised images through adversarial training. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2107–2116 (2017)
Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7472–7481 (2018)
Wang, Q., Du, Y., Fan, H., Ma, C.: Towards collaborative appearance and semantic adaptation for medical image segmentation. Neurocomputing 491, 633–643 (2022)
Wilson, G., Cook, D.J.: A survey of unsupervised deep domain adaptation. ACM Trans. Intell. Syst. Technol. (TIST) 11(5), 1–46 (2020)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)
Zou, D., Zhu, Q., Yan, P.: Unsupervised domain adaptation with dual-scheme fusion network for medical image segmentation. In: IJCAI, pp. 3291–3298 (2020)
Acknowledgments.
This study was funded by the Hong Kong Research Grants Council under Grant 16214521.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ji, W., Chung, A.C.S. (2024). Diffusion-Based Domain Adaptation for Medical Image Segmentation Using Stochastic Step Alignment. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15008. Springer, Cham. https://doi.org/10.1007/978-3-031-72111-3_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-72111-3_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72110-6
Online ISBN: 978-3-031-72111-3
eBook Packages: Computer ScienceComputer Science (R0)