Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Causal Intervention for Brain Tumor Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15009))

  • 1317 Accesses

Abstract

Due to blurred boundaries between the background and the foreground, along with the overlapping of different tumor lesions, accurate segmentation of brain tumors presents significant challenges. To tackle these issues, we propose a causal intervention model designed for brain tumor segmentation. This model effectively eliminates the influence of irrelevant content on tumor region feature extraction, thereby enhancing segmentation precision. Notably, we adopt a front-door adjustment strategy to mitigate the confounding effects of MRI images on our segmentation outcomes. Our approach specifically targets the removal of background effects and interference in overlapping areas across tumor categories. Comprehensive experiments on the BraTS2020 and BraTS2021 datasets confirm the superior performance of our proposed method, demonstrating its effectiveness in improving accuracy in challenging segmentation scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baid, U., et al.: The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)

  2. Bakas, S.: Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)

    Article  Google Scholar 

  3. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)

  4. Bauer, S., Wiest, R., Nolte, L.P., Reyes, M.: A survey of mri-based medical image analysis for brain tumor studies. Phys. Med. Biol. 58(13), R97 (2013)

    Article  Google Scholar 

  5. Brügger, R., Baumgartner, C.F., Konukoglu, E.: A partially reversible U-net for memory-efficient volumetric image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 429–437. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_48

    Chapter  Google Scholar 

  6. Chen, C., Liu, X., Ding, M., Zheng, J., Li, J.: 3D dilated multi-fiber network for real-time brain tumor segmentation in MRI. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 184–192. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_21

    Chapter  Google Scholar 

  7. Chen, J., et al.: Transunet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  8. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  9. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  10. Feng, Y., Cao, Y., An, D., Liu, P., Liao, X., Yu, B.: Daunet: a u-shaped network combining deep supervision and attention for brain tumor segmentation. Knowl.-Based Syst. 285, 111348 (2024)

    Article  Google Scholar 

  11. Gordillo, N., Montseny, E., Sobrevilla, P.: State of the art survey on mri brain tumor segmentation. Magn. Reson. Imaging 31(8), 1426–1438 (2013)

    Article  Google Scholar 

  12. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  13. Liu, Z., et al.: Canet: context aware network for brain glioma segmentation. IEEE Trans. Med. Imaging 40(7), 1763–1777 (2021)

    Article  Google Scholar 

  14. Lotlikar, V.S., Satpute, N., Gupta, A.: Brain tumor detection using machine learning and deep learning: a review. Curr. Med. Imaging (2021)

    Google Scholar 

  15. Louis, D.N., et al.: The 2007 who classification of tumours of the central nervous system. Acta Neuropathol. 114(2), 97–109 (2007)

    Article  Google Scholar 

  16. Luo, Z., Jia, Z., Yuan, Z., Peng, J.: Hdc-net: hierarchical decoupled convolution network for brain tumor segmentation. IEEE J. Biomed. Health Inf. 25(3), 737–745 (2020)

    Article  Google Scholar 

  17. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  18. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  19. Peiris, H., Hayat, M., Chen, Z., Egan, G., Harandi, M.: A robust volumetric transformer for accurate 3d tumor segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 162–172. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-16443-9_16

  20. Sharma, N., Aggarwal, L.M.: Automated medical image segmentation techniques. J. Med. Phys./Assoc. Med. Physicists India 35(1), 3 (2010)

    Google Scholar 

  21. She, D., Zhang, Y., Zhang, Z., Li, H., Yan, Z., Sun, X.: Eoformer: Edge-oriented transformer for brain tumor segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 333–343. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-43901-8_32

  22. Tian, Y., Bai, K., Yu, X., Zhu, S.: Causal multi-label learning for image classification. Neural Netw. 167, 626–637 (2023)

    Article  Google Scholar 

  23. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems. pp. 5998–6008 (2017)

    Google Scholar 

  24. Wang, T., Huang, J., Zhang, H., Sun, Q.: Visual commonsense r-cnn. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10760–10770 (2020)

    Google Scholar 

  25. Wang, W., Chen, C., Ding, M., Yu, H., Zha, S., Li, J.: TransBTS: multimodal brain tumor segmentation using transformer. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 109–119. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_11

    Chapter  Google Scholar 

  26. Xing, Z., Yu, L., Wan, L., Han, T., Zhu, L.: Nestedformer: nested modality-aware transformer for brain tumor segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 140–150. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-16443-9_14

  27. Xu, W., Yang, H., Zhang, M., Cao, Z., Pan, X., Liu, W.: Brain tumor segmentation with corner attention and high-dimensional perceptual loss. Biomed. Signal Process. Control 73, 103438 (2022)

    Article  Google Scholar 

  28. Zeng, X., Zeng, P., Tang, C., Wang, P., Yan, B., Wang, Y.: Dbtrans: a dual-branch vision transformer for multi-modal brain tumor segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 502–512. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-43901-8_48

  29. Zhang, M., et al.: Augmented transformer network for mri brain tumor segmentation. J. King Saud Univ.-Comput. Inf. Sci. 36(1), 101917 (2024)

    Google Scholar 

  30. Zhou, T., Canu, S., Vera, P., Ruan, S.: 3d medical multi-modal segmentation network guided by multi-source correlation constraint. In: 25th International Conference on Pattern Recognition, pp. 10243–10250. IEEE (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (62272337).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weizhi Nie .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, H., Li, Q., Nie, W., Xu, Z., Liu, A. (2024). Causal Intervention for Brain Tumor Segmentation. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15009. Springer, Cham. https://doi.org/10.1007/978-3-031-72114-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72114-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72113-7

  • Online ISBN: 978-3-031-72114-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics