Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Subgroup-Specific Risk-Controlled Dose Estimation in Radiotherapy

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Cancer remains a leading cause of death, highlighting the importance of effective radiotherapy (RT). Magnetic resonance-guided linear accelerators (MR-Linacs) enable imaging during RT, allowing for inter-fraction, and perhaps even intra-fraction, adjustments of treatment plans. However, achieving this requires fast and accurate dose calculations. While Monte Carlo simulations offer accuracy, they are computationally intensive. Deep learning frameworks show promise, yet lack uncertainty quantification crucial for high-risk applications like RT. Risk-controlling prediction sets (RCPS) offer model-agnostic uncertainty quantification with mathematical guarantees. However, we show that naive application of RCPS may lead to only certain subgroups such as the image background being risk-controlled. In this work, we extend RCPS to provide prediction intervals with coverage guarantees for multiple subgroups with unknown subgroup membership at test time. We evaluate our algorithm on real clinical planing volumes from five different anatomical regions and show that our novel subgroup RCPS (SG-RCPS) algorithm leads to prediction intervals that jointly control the risk for multiple subgroups. In particular, our method controls the risk of the crucial voxels along the radiation beam significantly better than conventional RCPS.

P. Fischer and H. Willms—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The code is available at https://github.com/paulkogni/SG-RCPS.

References

  1. Angelopoulos, A.N., et al.: Image-to-image regression with distribution-free uncertainty quantification and applications in imaging. In: International Conference on Machine Learning, pp. 717–730. PMLR (2022)

    Google Scholar 

  2. Bates, S., Angelopoulos, A., Lei, L., Malik, J., Jordan, M.: Distribution-free, risk-controlling prediction sets. J. ACM (JACM) 68(6), 1–34 (2021)

    Article  MathSciNet  Google Scholar 

  3. Baumgartner, C.F., et al.: PHiSeg: capturing uncertainty in medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 119–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_14

    Chapter  Google Scholar 

  4. Bol, G., Hissoiny, S., Lagendijk, J., Raaymakers, B.: Fast online monte carlo-based imrt planning for the mri linear accelerator. Phys. Med. Biol. 57(5), 1375 (2012)

    Article  Google Scholar 

  5. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  6. Fischer, P., Thomas, K., Baumgartner, C.F.: Uncertainty estimation and propagation in accelerated mri reconstruction. In: Sudre, C.H., Baumgartner, C.F., Dalca, A., Mehta, R., Qin, C., Wells, W.M. (eds.) UNSURE 2023. LNCS, pp. 84–94. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-44336-7_9

    Chapter  Google Scholar 

  7. Friedel, M., Nachbar, M., Mönnich, D., Dohm, O., Thorwarth, D.: Development and validation of a 1.5 t mr-linac full accelerator head and cryostat model for monte carlo dose simulations. Med. Phys. 46(11), 5304–5313 (2019)

    Google Scholar 

  8. Hall, W., et al.: Mr linac atlantic consortium and the viewray c2t2 research consortium. the transformation of radiation oncology using real-time magnetic resonance guidance: a review. Eur. J. Cancer 122, 42–52 (2019)

    Google Scholar 

  9. Hoeffding, W.: Probability inequalities for sums of bounded random variables. In: The Collected Works of Wassily Hoeffding, pp. 409–426 (1994)

    Google Scholar 

  10. Kawrakow, I., Rogers, D., Mainegra-Hing, E., Tessier, F., Townson, R., Walters, B.: Egsnrc toolkit for monte carlo simulation of ionizing radiation transport (2000). https://doi.org/10.4224/40001303

  11. Kendall, A., Badrinarayanan, V., Cipolla, R.: Bayesian segnet: model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. arXiv preprint arXiv:1511.02680 (2015)

  12. Kohl, S., et al.: A probabilistic u-net for segmentation of ambiguous images. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  13. Kontaxis, C., Bol, G., Lagendijk, J., Raaymakers, B.: Deepdose: towards a fast dose calculation engine for radiation therapy using deep learning. Phys. Med. Biol. 65(7), 075013 (2020)

    Article  Google Scholar 

  14. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  15. Martinot, S., Bus, N., Vakalopoulou, M., Robert, C., Deutsch, E., Paragios, N.: High-particle simulation of Monte-Carlo dose distribution with 3D ConvLSTMs. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 499–508. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_48

    Chapter  Google Scholar 

  16. Neishabouri, A., Wahl, N., Mairani, A., Köthe, U., Bangert, M.: Long short-term memory networks for proton dose calculation in highly heterogeneous tissues. Med. Phys. 48(4), 1893–1908 (2021)

    Article  Google Scholar 

  17. Randall, J.W., Rammohan, N., Das, I.J., Yadav, P.: Towards accurate and precise image-guided radiotherapy: clinical applications of the mr-linac. J. Clin. Med. 11(14), 4044 (2022)

    Article  Google Scholar 

  18. Tsekas, G., Bol, G., Raaymakers, B., Kontaxis, C.: Deepdose: a robust deep learning-based dose engine for abdominal tumours in a 1.5 t mri radiotherapy system. Phys. Med. Biol. 66(6), 065017 (2021)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Excellence Cluster 2064 “Machine Learning—New Perspectives for Science”, project number 390727645 and received funding from the German Research Council under DFG Grant No. ZI 736/2-1. The authors thank the International Max Planck Research School for Intelligent Systems (IMPRS-IS) for supporting Paul Fischer. The authors acknowledge support by the state of Baden-Württemberg through bwHPC (INST39/963-1 FUGG bwForCluster NEMO) and through the Research and Training Network “AI4MedBW”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Fischer .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 135 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fischer, P., Willms, H., Schneider, M., Thorwarth, D., Muehlebach, M., Baumgartner, C.F. (2024). Subgroup-Specific Risk-Controlled Dose Estimation in Radiotherapy. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15010. Springer, Cham. https://doi.org/10.1007/978-3-031-72117-5_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72117-5_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72116-8

  • Online ISBN: 978-3-031-72117-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics