Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Hyperreflective Foci Segmentation Network for OCT Images with Multi-dimensional Semantic Enhancement

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15001))

  • 1753 Accesses

Abstract

Diabetic macular edema (DME) is a leading cause of vision loss worldwide. Optical Coherence Tomography (OCT) serves as a widely accepted imaging tool for diagnosing DME due to its non-invasiveness and high resolution cross-sectional view. Clinical evaluation of Hyperreflective Foci (HRF) in OCT contributes to understanding the origins of DME and predicting disease progression or treatment efficacy. However, limited information and a significant imbalance between foreground and background in HRF present challenges for its precise segmentation in OCT images. In this study, we propose an attention mechanism-based MUlti-dimensional Semantic Enhancement Network (MUSE-Net) for HRF segmentation to address these challenges. Specifically, our MUSE-Net comprises attention-based multi-dimensional semantic information enhancement modules and class-imbalance-insensitive joint loss. The adaptive region guidance module softly allocates regional importance in slice, enriching the single-slice semantic information. The adjacent slice guidance module exploits the remote information across consecutive slices, enriching the multi-dimensional semantic information. Class-imbalance-insensitive joint loss combines pixel-level perception optimization with image-level considerations, alleviating the gradient dominance of the background during model training. Our experimental results demonstrate that MUSE-Net outperforms existing methods over two datasets respectively. To further promote the reproducible research, we made the code and these two datasets online available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bolz, M., et al.: Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema. Ophthalmology 116(5), 914–920 (2009)

    Article  Google Scholar 

  2. Borrelli, E., et al.: Long-term visual outcomes and morphologic biomarkers of vision loss in eyes with diabetic macular edema treated with anti-VEGF therapy. Am. J. Ophthalmol. 235, 80–89 (2022)

    Article  Google Scholar 

  3. Cao, D., et al.: Hyperreflective foci, optical coherence tomography progression indicators in age-related macular degeneration, include transdifferentiated retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 62(10), 34–34 (2021)

    Article  Google Scholar 

  4. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 179–187. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_19

    Chapter  Google Scholar 

  5. Fragiotta, S., et al.: Significance of hyperreflective foci as an optical coherence tomography biomarker in retinal diseases: characterization and clinical implications. J. Ophthalmol. 2021 (2021)

    Google Scholar 

  6. Goel, S., et al.: Automated region of interest selection improves deep learning-based segmentation of hyper-reflective foci in optical coherence tomography images. J. Clin. Med. 11(24), 7404 (2022)

    Article  Google Scholar 

  7. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  8. Klein, R., et al.: The relationship of retinal vessel geometric characteristics to the incidence and progression of diabetic retinopathy. Ophthalmology 125(11), 1784–1792 (2018)

    Article  Google Scholar 

  9. Moraes, G., et al.: Quantitative analysis of oct for neovascular age-related macular degeneration using deep learning. Ophthalmology 128(5), 693–705 (2021)

    Article  Google Scholar 

  10. Okuwobi, I.P., Ji, Z., Fan, W., Yuan, S., Bekalo, L., Chen, Q.: Automated quantification of hyperreflective foci in SD-OCT with diabetic retinopathy. IEEE J. Biomed. Health Inform. 24(4), 1125–1136 (2019)

    Article  Google Scholar 

  11. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  12. Schlegl, T., et al.: Fully automated segmentation of hyperreflective foci in optical coherence tomography images. arXiv preprint arXiv:1805.03278 (2018)

  13. Wang, X., Han, S., Chen, Y., Gao, D., Vasconcelos, N.: Volumetric attention for 3D medical image segmentation and detection. In: Shen, D., et al. (eds.) MICCAI 2019, Part VI. LNCS, vol. 11769, pp. 175–184. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_20

    Chapter  Google Scholar 

  14. Wei, J., Yu, S., Du, Y., Liu, K., Xu, Y., Xu, X.: Automatic segmentation of hyperreflective foci in OCT images based on lightweight DBR network. J. Digit. Imaging 1–10 (2023)

    Google Scholar 

  15. Xie, S., Okuwobi, I.P., Li, M., Zhang, Y., Yuan, S., Chen, Q.: Fast and automated hyperreflective foci segmentation based on image enhancement and improved 3D U-net in SD-OCT volumes with diabetic retinopathy. Transl. Vision Sci. Technol. 9(2), 21–21 (2020)

    Article  Google Scholar 

  16. Yao, C., et al.: SANet: a self-adaptive network for hyperreflective foci segmentation in retinal oct images. In: Medical Imaging 2021: Image Processing, vol. 11596, pp. 809–815. SPIE (2021)

    Google Scholar 

  17. Zhang, J., et al.: Diabetic macular edema: current understanding, molecular mechanisms and therapeutic implications. Cells 11(21), 3362 (2022)

    Article  Google Scholar 

  18. Zheng, Z., Zhong, Y., Wang, J., Ma, A., Zhang, L.: FarSeg++: foreground-aware relation network for geospatial object segmentation in high spatial resolution remote sensing imagery. IEEE Trans. Pattern Anal. Mach. Intell. (2023)

    Google Scholar 

  19. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Natural Science Foundation of China (62272444, 62371442, 62103398), Zhejiang Provincial Natural Science Foundation of China (LR22F020008, LZ23F010002, LR24F010002), China Postdoctoral Science Foundation (2023M743629).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuhui Ma or Yitian Zhao .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X. et al. (2024). A Hyperreflective Foci Segmentation Network for OCT Images with Multi-dimensional Semantic Enhancement. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15001. Springer, Cham. https://doi.org/10.1007/978-3-031-72378-0_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72378-0_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72377-3

  • Online ISBN: 978-3-031-72378-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics