Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

MotionLCM: Real-Time Controllable Motion Generation via Latent Consistency Model

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

This work introduces MotionLCM, extending controllable motion generation to a real-time level. Existing methods for spatial-temporal control in text-conditioned motion generation suffer from significant runtime inefficiency. To address this issue, we first propose the motion latent consistency model (MotionLCM) for motion generation, building upon the latent diffusion model [9]. By adopting one-step (or few-step) inference, we further improve the runtime efficiency of the motion latent diffusion model for motion generation. To ensure effective controllability, we incorporate a motion ControlNet within the latent space of MotionLCM and enable explicit control signals (e.g., initial poses) in the vanilla motion space to control the generation process directly, similar to controlling other latent-free diffusion models [29, 73] for motion generation. By employing these techniques, our approach can generate human motions with text and control signals in real-time. Experimental results demonstrate the remarkable generation and controlling capabilities of MotionLCM while maintaining real-time runtime efficiency.

L.-H. Chen—Project lead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    EMA operation: \(\mathbf{\Theta }^{-} \leftarrow \texttt {sg}(\mu \mathbf{\Theta }^{-} + (1 - \mu ) \mathbf{\Theta })\), where \(\texttt {sg}(\cdot )\) denotes the stopgrad operation and \(\mu \) satisfies \(0 \le \mu < 1\).

References

  1. Ahn, H., Ha, T., Choi, Y., Yoo, H., Oh, S.: Text2action: generative adversarial synthesis from language to action. In: ICRA, pp. 5915–5920 (2018)

    Google Scholar 

  2. Ahuja, C., Morency, L.P.: Language2pose: natural language grounded pose forecasting. In: 3DV, pp. 719–728 (2019)

    Google Scholar 

  3. Athanasiou, N., Petrovich, M., Black, M.J., Varol, G.: Teach: temporal action composition for 3D humans. In: 3DV, pp. 414–423 (2022)

    Google Scholar 

  4. Barquero, G., Escalera, S., Palmero, C.: Seamless human motion composition with blended positional encodings. In: CVPR, pp. 457–469 (2024)

    Google Scholar 

  5. Bhattacharya, U., Rewkowski, N., Banerjee, A., Guhan, P., Bera, A., Manocha, D.: Text2gestures: a transformer-based network for generating emotive body gestures for virtual agents. In: VR, pp. 1–10 (2021)

    Google Scholar 

  6. Cervantes, P., Sekikawa, Y., Sato, I., Shinoda, K.: Implicit neural representations for variable length human motion generation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) ECCV 2022. LNCS, vol. 13677, pp. 356–372. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19790-1_22

  7. Chen, L.H., et al.: Motionllm: understanding human behaviors from human motions and videos. arXiv preprint arXiv:2405.20340 (2024)

  8. Chen, L.H., Zhang, J., Li, Y., Pang, Y., Xia, X., Liu, T.: HumanMAC: masked motion completion for human motion prediction. In: ICCV, pp. 9544–9555 (2023)

    Google Scholar 

  9. Chen, X., et al.: Executing your commands via motion diffusion in latent space. In: CVPR, pp. 18000–18010 (2023)

    Google Scholar 

  10. Cong, P., et al.: Laserhuman: language-guided scene-aware human motion generation in free environment. arXiv preprint arXiv:2403.13307 (2024)

  11. Dabral, R., Mughal, M.H., Golyanik, V., Theobalt, C.: Mofusion: a framework for denoising-diffusion-based motion synthesis. In: CVPR, pp. 9760–9770 (2023)

    Google Scholar 

  12. Dou, Z., Chen, X., Fan, Q., Komura, T., Wang, W.: C· ase: learning conditional adversarial skill embeddings for physics-based characters. In: SIGGRAPH Asia, pp. 1–11 (2023)

    Google Scholar 

  13. Fan, K., et al.: Freemotion: a unified framework for number-free text-to-motion synthesis. arXiv preprint arXiv:2405.15763 (2024)

  14. Ghosh, A., Cheema, N., Oguz, C., Theobalt, C., Slusallek, P.: Synthesis of compositional animations from textual descriptions. In: ICCV, pp. 1396–1406 (2021)

    Google Scholar 

  15. Guo, C., Mu, Y., Javed, M.G., Wang, S., Cheng, L.: MOMask: generative masked modeling of 3D human motions. In: CVPR, pp. 1900–1910 (2024)

    Google Scholar 

  16. Guo, C., et al.: Generative human motion stylization in latent space. arXiv preprint arXiv:2401.13505 (2024)

  17. Guo, C., et al.: Generating diverse and natural 3D human motions from text. In: CVPR, pp. 5152–5161 (2022)

    Google Scholar 

  18. Guo, C., Zuo, X., Wang, S., Cheng, L.: TM2T: stochastic and tokenized modeling for the reciprocal generation of 3D human motions and texts. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13695, pp. 580–597. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19833-5_34

    Chapter  Google Scholar 

  19. Guo, C., et al.: Action2motion: conditioned generation of 3D human motions. In: ACMMM, pp. 2021–2029 (2020)

    Google Scholar 

  20. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: NeurIPS, pp. 6840–6851 (2020)

    Google Scholar 

  21. Ho, J., Salimans, T.: Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598 (2022)

  22. Holden, D., Komura, T., Saito, J.: Phase-functioned neural networks for character control. TOG 36(4), 1–13 (2017)

    Article  Google Scholar 

  23. Holden, D., Saito, J., Komura, T.: A deep learning framework for character motion synthesis and editing. TOG 35(4), 1–11 (2016)

    Article  Google Scholar 

  24. Huang, Y., et al.: Stablemofusion: towards robust and efficient diffusion-based motion generation framework. arXiv preprint arXiv:2405.05691 (2024)

  25. Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 35(1), 73–101 (1964)

    Article  MathSciNet  Google Scholar 

  26. Ji, Y., Xu, F., Yang, Y., Shen, F., Shen, H.T., Zheng, W.S.: a large-scale RGB-D database for arbitrary-view human action recognition. In: ACMMM, pp. 1510–1518 (2018)

    Google Scholar 

  27. Jiang, B., Chen, X., Liu, W., Yu, J., Yu, G., Chen, T.: MotionGPT: human motion as a foreign language. In: NeurIPS (2024)

    Google Scholar 

  28. Karras, T., Aittala, M., Aila, T., Laine, S.: Elucidating the design space of diffusion-based generative models. In: NeurIPS, pp. 26565–26577 (2022)

    Google Scholar 

  29. Karunratanakul, K., Preechakul, K., Suwajanakorn, S., Tang, S.: Guided motion diffusion for controllable human motion synthesis. In: CVPR, pp. 2151–2162 (2023)

    Google Scholar 

  30. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  31. Lee, T., Moon, G., Lee, K.M.: Multiact: long-term 3D human motion generation from multiple action labels. In: AAAI, pp. 1231–1239 (2023)

    Google Scholar 

  32. Li, B., Zhao, Y., Zhelun, S., Sheng, L.: Danceformer: music conditioned 3D dance generation with parametric motion transformer. In: AAAI, pp. 1272–1279 (2022)

    Google Scholar 

  33. Li, R., et al.: Lodge: a coarse to fine diffusion network for long dance generation guided by the characteristic dance primitives. In: CVPR, pp. 1524–1534 (2024)

    Google Scholar 

  34. Li, R., et al.: Finedance: a fine-grained choreography dataset for 3D full body dance generation. In: ICCV, pp. 10234–10243 (2023)

    Google Scholar 

  35. Li, R., Yang, S., Ross, D.A., Kanazawa, A.: AI choreographer: music conditioned 3D dance generation with aist++. In: ICCV, pp. 13401–13412 (2021)

    Google Scholar 

  36. Li, T., Qiao, C., Ren, G., Yin, K., Ha, S.: AAMDM: accelerated auto-regressive motion diffusion model. In: CVPR, pp. 1813–1823 (2024)

    Google Scholar 

  37. Lin, A.S., Wu, L., Corona, R., Tai, K., Huang, Q., Mooney, R.J.: Generating animated videos of human activities from natural language descriptions. Learning 1(2018), 1 (2018)

    Google Scholar 

  38. Lin, X., Amer, M.R.: Human motion modeling using DVGANs. arXiv preprint arXiv:1804.10652 (2018)

  39. Liu, J., Dai, W., Wang, C., Cheng, Y., Tang, Y., Tong, X.: Plan, posture and go: towards open-world text-to-motion generation. arXiv preprint arXiv:2312.14828 (2023)

  40. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  41. Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., Zhu, J.: DPM-solver: a fast ode solver for diffusion probabilistic model sampling in around 10 steps. In: NeurIPS, pp. 5775–5787 (2022)

    Google Scholar 

  42. Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., Zhu, J.: DPM-solver++: fast solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095 (2022)

  43. Lu, S., et al.: Humantomato: text-aligned whole-body motion generation. arXiv preprint arXiv:2310.12978 (2023)

  44. Luo, S., Tan, Y., Huang, L., Li, J., Zhao, H.: Latent consistency models: synthesizing high-resolution images with few-step inference. arXiv preprint arXiv:2310.04378 (2023)

  45. Mahmood, N., Ghorbani, N., Troje, N.F., Pons-Moll, G., Black, M.J.: Amass: archive of motion capture as surface shapes. In: ICCV, pp. 5442–5451 (2019)

    Google Scholar 

  46. Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: ICML, pp. 8162–8171 (2021)

    Google Scholar 

  47. Paszke, A, et al.: Pytorch: an imperative style, high-performance deep learning library. In: NeurIPS (2019)

    Google Scholar 

  48. Petrovich, M., Black, M.J., Varol, G.: Action-conditioned 3D human motion synthesis with transformer VAE. In: ICCV, pp. 10985–10995 (2021)

    Google Scholar 

  49. Petrovich, M., Black, M.J., Varol, G.: Temos: generating diverse human motions from textual descriptions. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13682, pp. 480–497. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20047-2_28

  50. Petrovich, M., Black, M.J., Varol, G.: TMR: text-to-motion retrieval using contrastive 3D human motion synthesis. In: ICCV, pp. 9488–9497 (2023)

    Google Scholar 

  51. Petrovich, M., et al.: Multi-track timeline control for text-driven 3D human motion generation. In: CVPRW, pp. 1911–1921 (2024)

    Google Scholar 

  52. Plappert, M., Mandery, C., Asfour, T.: The kit motion-language dataset. Big Data 4(4), 236–252 (2016)

    Article  Google Scholar 

  53. Punnakkal, A.R., Chandrasekaran, A., Athanasiou, N., Quiros-Ramirez, A., Black, M.J.: Babel: bodies, action and behavior with English labels. In: CVPR, pp. 722–731 (2021)

    Google Scholar 

  54. Raab, S., Leibovitch, I., Li, P., Aberman, K., Sorkine-Hornung, O., Cohen-Or, D.: Modi: unconditional motion synthesis from diverse data. In: CVPR, pp. 13873–13883 (2023)

    Google Scholar 

  55. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR, pp. 10684–10695 (2022)

    Google Scholar 

  56. Shafir, Y., Tevet, G., Kapon, R., Bermano, A.H.: Human motion diffusion as a generative prior. In: ICLR (2024)

    Google Scholar 

  57. Shahroudy, A., Liu, J., Ng, T.T., Wang, G.: NTU RGB+ D: a large scale dataset for 3D human activity analysis. In: CVPR, pp. 1010–1019 (2016)

    Google Scholar 

  58. Shi, Y., Wang, J., Jiang, X., Dai, B.: Controllable motion diffusion model. arXiv preprint arXiv:2306.00416 (2023)

  59. Siyao, L., et al.: Bailando: 3D dance generation by actor-critic GPT with choreographic memory. In: CVPR, pp. 11050–11059 (2022)

    Google Scholar 

  60. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: ICML, pp. 2256–2265 (2015)

    Google Scholar 

  61. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. In: ICLR (2021)

    Google Scholar 

  62. Song, Y., Dhariwal, P., Chen, M., Sutskever, I.: Consistency models. In: ICML (2023)

    Google Scholar 

  63. Tang, Y., et al.: Flag3D: a 3D fitness activity dataset with language instruction. In: CVPR, pp. 22106–22117 (2023)

    Google Scholar 

  64. Tevet, G., Gordon, B., Hertz, A., Bermano, A.H., Cohen-Or, D.: Motionclip: exposing human motion generation to clip space. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13682, pp. 358–374. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20047-2_21

  65. Tevet, G., Raab, S., Gordon, B., Shafir, Y., Cohen-Or, D., Bermano, A.H.: Human motion diffusion model. In: ICLR (2022)

    Google Scholar 

  66. Tseng, J., Castellon, R., Liu, K.: Edge: editable dance generation from music. In: CVPR, pp. 448–458 (2023)

    Google Scholar 

  67. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  68. Wan, W., Dou, Z., Komura, T., Wang, W., Jayaraman, D., Liu, L.: Tlcontrol: trajectory and language control for human motion synthesis. arXiv preprint arXiv:2311.17135 (2023)

  69. Wang, Z., et al.: Move as you say interact as you can: language-guided human motion generation with scene affordance. In: CVPR, pp. 433–444 (2024)

    Google Scholar 

  70. Wang, Z., Chen, Y., Liu, T., Zhu, Y., Liang, W., Huang, S.: Humanise: language-conditioned human motion generation in 3D scenes. In: NeurIPS, pp. 14959–14971 (2022)

    Google Scholar 

  71. Wang, Z., Wang, J., Lin, D., Dai, B.: Intercontrol: generate human motion interactions by controlling every joint. arXiv preprint arXiv:2311.15864 (2023)

  72. Xiao, Z., et al.: Unified human-scene interaction via prompted chain-of-contacts. In: ICLR (2024)

    Google Scholar 

  73. Xie, Y., Jampani, V., Zhong, L., Sun, D., Jiang, H.: OmniControl: control any joint at any time for human motion generation. In: ICLR (2024)

    Google Scholar 

  74. Xu, L., et al.: Inter-x: towards versatile human-human interaction analysis. In: CVPR, pp. 22260–22271 (2024)

    Google Scholar 

  75. Xu, L., et al.: Actformer: a GAN-based transformer towards general action-conditioned 3D human motion generation. In: ICCV, pp. 2228–2238 (2023)

    Google Scholar 

  76. Xu, L., et al.: RegenNet: towards human action-reaction synthesis. In: CVPR, pp. 1759–1769 (2024)

    Google Scholar 

  77. Yan, S., Li, Z., Xiong, Y., Yan, H., Lin, D.: Convolutional sequence generation for skeleton-based action synthesis. In: ICCV, pp. 4394–4402 (2019)

    Google Scholar 

  78. Yuan, Y., Song, J., Iqbal, U., Vahdat, A., Kautz, J.: PhysDiff: physics-guided human motion diffusion model. In: ICCV, pp. 16010–16021 (2023)

    Google Scholar 

  79. Zhang, B., et al.: RodinHD: high-fidelity 3D avatar generation with diffusion models. arXiv preprint arXiv:2407.06938 (2024)

  80. Zhang, B., et al.: Gaussiancube: structuring gaussian splatting using optimal transport for 3D generative modeling. arXiv preprint arXiv:2403.19655 (2024)

  81. Zhang, J., et al.: Generating human motion from textual descriptions with discrete representations. In: CVPR, pp. 14730–14740 (2023)

    Google Scholar 

  82. Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image diffusion models. In: ICCV, pp. 3836–3847 (2023)

    Google Scholar 

  83. Zhang, M., et al.: Motiondiffuse: text-driven human motion generation with diffusion model. arXiv preprint arXiv:2208.15001 (2022)

  84. Zhao, R., Su, H., Ji, Q.: Bayesian adversarial human motion synthesis. In: CVPR, pp. 6225–6234 (2020)

    Google Scholar 

  85. Zhong, L., Xie, Y., Jampani, V., Sun, D., Jiang, H.: Smoodi: stylized motion diffusion model. arXiv preprint arXiv:2407.12783 (2024)

  86. Zhou, W., et al.: EMDM: efficient motion diffusion model for fast, high-quality motion generation. arXiv preprint arXiv:2312.02256 (2023)

Download references

Acknowledgements

The research is supported by Shenzhen Ubiquitous Data Enabling Key Lab under grant ZDSYS20220527171406015 and CCF-Tencent Rhino-Bird Open Research Fund. This project is also supported by Shanghai Artificial Intelligence Laboratory. The author team would like to acknowledge Yiming Xie, Zhiyang Dou, and Shunlin Lu for their helpful technical discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingbo Wang or Bo Dai .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 55274 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dai, W., Chen, LH., Wang, J., Liu, J., Dai, B., Tang, Y. (2025). MotionLCM: Real-Time Controllable Motion Generation via Latent Consistency Model. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15074. Springer, Cham. https://doi.org/10.1007/978-3-031-72640-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72640-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72639-2

  • Online ISBN: 978-3-031-72640-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics