Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

G\(^2\) fR: Frequency Regularization in Grid-Based Feature Encoding Neural Radiance Fields

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15080))

Included in the following conference series:

  • 373 Accesses

Abstract

Neural Radiance Field (NeRF) methodologies have garnered considerable interest, particularly with the introduction of grid-based feature encoding (GFE) approaches such as Instant-NGP and TensoRF. Conventional NeRF employs positional encoding (PE) and represents a scene with a Multi-Layer Perceptron (MLP). Frequency regularization has been identified as an effective strategy to overcome primary challenges in PE-based NeRFs, including dependency on known camera poses and the requirement for extensive image datasets. While several studies have endeavored to extend frequency regularization to GFE approaches, there is still a lack of basic theoretical foundations for these methods. Therefore, we first clarify the underlying mechanisms of frequency regularization. Subsequently, we conduct a comprehensive investigation into the expressive capability of GFE-based NeRFs and attempt to connect frequency regularization with GFE methods. Moreover, we propose a generalized strategy, G\(^2\) fR: Generalized Grid-based Frequency Regularization, to address issues of camera pose optimization and few-shot reconstruction with GFE methods. We validate the efficacy of our methods through an extensive series of experiments employing various representations across diverse scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The codes of [11] are not publicly available when we write this paper. In this study, we use our own implementation according to the description in the paper.

References

  1. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF 360: unbounded anti-aliased neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5470–5479 (2022)

    Google Scholar 

  2. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Zip-NeRF: anti-aliased grid-based neural radiance fields. In: ICCV (2023)

    Google Scholar 

  3. Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: TensoRF: tensorial radiance fields. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) European Conference on Computer Vision, pp. 333–350. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_20

  4. Chen, A., et al.: MVSNeRF: fast generalizable radiance field reconstruction from multi-view stereo. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14124–14133 (2021)

    Google Scholar 

  5. Chen, Y., et al.: Local-to-global registration for bundle-adjusting neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8264–8273 (2023)

    Google Scholar 

  6. Chen, Z., et al.: NeuRBF: a neural fields representation with adaptive radial basis functions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4182–4194 (2023)

    Google Scholar 

  7. Chng, S.F., Ramasinghe, S., Sherrah, J., Lucey, S.: Gaussian activated neural radiance fields for high fidelity reconstruction and pose estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) European Conference on Computer Vision, pp. 264–280. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19827-4_16

  8. Deng, J., et al.: Nerf-loam: neural implicit representation for large-scale incremental lidar odometry and mapping. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8218–8227 (2023)

    Google Scholar 

  9. Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: radiance fields without neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5501–5510 (2022)

    Google Scholar 

  10. Gao, Z., Dai, W., Zhang, Y.: Adaptive positional encoding for bundle-adjusting neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3284–3294 (2023)

    Google Scholar 

  11. Heo, H., et al.: Robust camera pose refinement for multi-resolution hash encoding. arXiv preprint arXiv:2302.01571 (2023)

  12. Herau, Q., et al.: Moisst: multi-modal optimization of implicit scene for spatiotemporal calibration. arXiv preprint arXiv:2303.03056 (2023)

  13. Hu, W., et al.: Tri-MipRF: Tri-Mip representation for efficient anti-aliasing neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 19774–19783 (2023)

    Google Scholar 

  14. Hwang, I., Kim, J., Kim, Y.M.: Ev-nerf: Event based neural radiance field. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 837–847 (2023)

    Google Scholar 

  15. Jain, A., Tancik, M., Abbeel, P.: Putting nerf on a diet: semantically consistent few-shot view synthesis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5885–5894 (2021)

    Google Scholar 

  16. Jeong, Y., Ahn, S., Choy, C., Anandkumar, A., Cho, M., Park, J.: Self-calibrating neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5846–5854 (2021)

    Google Scholar 

  17. Li, Z., et al.: Neuralangelo: high-fidelity neural surface reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8456–8465 (2023)

    Google Scholar 

  18. Lin, C.H., Ma, W.C., Torralba, A., Lucey, S.: Barf: bundle-adjusting neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5741–5751 (2021)

    Google Scholar 

  19. Lin, Y., et al.: Parallel inversion of neural radiance fields for robust pose estimation. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 9377–9384. IEEE (2023)

    Google Scholar 

  20. Ma, Q., Paudel, D.P., Chhatkuli, A., Van Gool, L.: Continuous pose for monocular cameras in neural implicit representation. arXiv preprint arXiv:2311.17119 (2023)

  21. Max, N.: Optical models for direct volume rendering. IEEE Trans. Visual Comput. Graphics 1(2), 99–108 (1995)

    Article  Google Scholar 

  22. Mehmeti-Göpel, C.H.A., Hartmann, D., Wand, M.: Ringing relus: harmonic distortion analysis of nonlinear feedforward networks. In: International Conference on Learning Representations (2020)

    Google Scholar 

  23. Meuleman, A., et al.: Progressively optimized local radiance fields for robust view synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16539–16548 (2023)

    Google Scholar 

  24. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)

    Article  Google Scholar 

  25. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. (ToG) 41(4), 1–15 (2022)

    Article  Google Scholar 

  26. Ortiz, J., et al.: ISDF: real-time neural signed distance fields for robot perception. arXiv preprint arXiv:2204.02296 (2022)

  27. Park, K., Henzler, P., Mildenhall, B., Barron, J.T., Martin-Brualla, R.: CamP: camera preconditioning for neural radiance fields. ACM Trans. Graph. (TOG) 42(6), 1–11 (2023)

    Article  Google Scholar 

  28. Rahaman, N., et al.: On the spectral bias of neural networks. In: International Conference on Machine Learning, pp. 5301–5310. PMLR (2019)

    Google Scholar 

  29. Rahimi, A., Recht, B.: Random features for large-scale kernel machines. In: Advances in Neural Information Processing Systems, vol. 20 (2007)

    Google Scholar 

  30. Saragadam, V., LeJeune, D., Tan, J., Balakrishnan, G., Veeraraghavan, A., Baraniuk, R.G.: Wire: wavelet implicit neural representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18507–18516 (2023)

    Google Scholar 

  31. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. Adv. Neural. Inf. Process. Syst. 33, 7462–7473 (2020)

    Google Scholar 

  32. Sucar, E., Liu, S., Ortiz, J., Davison, A.: iMAP: implicit mapping and positioning in real-time. In: Proceedings of the International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  33. Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimization: Super-fast convergence for radiance fields reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5459–5469 (2022)

    Google Scholar 

  34. Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. Adv. Neural. Inf. Process. Syst. 33, 7537–7547 (2020)

    Google Scholar 

  35. Wang, P., Chen, X., Chen, T., Venugopalan, S., Wang, Z.: Is attention all NeRF needs? arXiv preprint arXiv:2207.13298 (2022)

  36. Wang, Q., et al.: IBRNet: learning multi-view image-based rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2021)

    Google Scholar 

  37. Wang, Y., Gong, Y., Zeng, Y.: Hyb-NeRF: a multiresolution hybrid encoding for neural radiance fields. arXiv preprint arXiv:2311.12490 (2023)

  38. Wang, Y., Han, Q., Habermann, M., Daniilidis, K., Theobalt, C., Liu, L.: Neus2: fast learning of neural implicit surfaces for multi-view reconstruction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3295–3306 (2023)

    Google Scholar 

  39. Wang, Z., Wu, S., Xie, W., Chen, M., Prisacariu, V.A.: NeRF–: neural radiance fields without known camera parameters. arXiv preprint arXiv:2102.07064 (2021)

  40. Wei, F., et al.: Self-supervised neural articulated shape and appearance models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15816–15826 (2022)

    Google Scholar 

  41. Yang, J., Pavone, M., Wang, Y.: FreeNeRF: improving few-shot neural rendering with free frequency regularization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8254–8263 (2023)

    Google Scholar 

  42. Yen-Chen, L., Florence, P., Barron, J.T., Rodriguez, A., Isola, P., Lin, T.Y.: INeRF: inverting neural radiance fields for pose estimation. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1323–1330. IEEE (2021)

    Google Scholar 

  43. Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelNeRF: neural radiance fields from one or few images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4578–4587 (2021)

    Google Scholar 

  44. Yüce, G., Ortiz-Jiménez, G., Besbinar, B., Frossard, P.: A structured dictionary perspective on implicit neural representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19228–19238 (2022)

    Google Scholar 

  45. Zheng, J., Ramasinghe, S., Li, X., Lucey, S.: Trading positional complexity vs deepness in coordinate networks. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) European Conference on Computer Vision, pp. 144–160. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19812-0_9

  46. Zhong, X., Pan, Y., Behley, J., Stachniss, C.: Shine-mapping: large-scale 3D mapping using sparse hierarchical implicit neural representations. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 8371–8377. IEEE (2023)

    Google Scholar 

  47. Zhou, S., Xie, S., Ishikawa, R., Sakurada, K., Onishi, M., Oishi, T.: INF: implicit neural fusion for LiDAR and camera. In: 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10918–10925. IEEE (2023)

    Google Scholar 

  48. Zhu, Z., et al.: Nice-slam: neural implicit scalable encoding for slam. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12786–12796 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by JST PRESTO Grant Number JPMJPR22C4. We would also like to express our thanks and gratitude to Mr. Ryuhei Hamaguchi and Mr. Kimihiro Akiyama for their invaluable comments and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuxiang Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, S., Zhou, S., Sakurada, K., Ishikawa, R., Onishi, M., Oishi, T. (2025). G\(^2\) fR: Frequency Regularization in Grid-Based Feature Encoding Neural Radiance Fields. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15080. Springer, Cham. https://doi.org/10.1007/978-3-031-72670-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72670-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72669-9

  • Online ISBN: 978-3-031-72670-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics