Abstract
Neural Radiance Field (NeRF) methodologies have garnered considerable interest, particularly with the introduction of grid-based feature encoding (GFE) approaches such as Instant-NGP and TensoRF. Conventional NeRF employs positional encoding (PE) and represents a scene with a Multi-Layer Perceptron (MLP). Frequency regularization has been identified as an effective strategy to overcome primary challenges in PE-based NeRFs, including dependency on known camera poses and the requirement for extensive image datasets. While several studies have endeavored to extend frequency regularization to GFE approaches, there is still a lack of basic theoretical foundations for these methods. Therefore, we first clarify the underlying mechanisms of frequency regularization. Subsequently, we conduct a comprehensive investigation into the expressive capability of GFE-based NeRFs and attempt to connect frequency regularization with GFE methods. Moreover, we propose a generalized strategy, G\(^2\) fR: Generalized Grid-based Frequency Regularization, to address issues of camera pose optimization and few-shot reconstruction with GFE methods. We validate the efficacy of our methods through an extensive series of experiments employing various representations across diverse scenarios.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The codes of [11] are not publicly available when we write this paper. In this study, we use our own implementation according to the description in the paper.
References
Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF 360: unbounded anti-aliased neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5470–5479 (2022)
Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Zip-NeRF: anti-aliased grid-based neural radiance fields. In: ICCV (2023)
Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: TensoRF: tensorial radiance fields. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) European Conference on Computer Vision, pp. 333–350. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_20
Chen, A., et al.: MVSNeRF: fast generalizable radiance field reconstruction from multi-view stereo. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14124–14133 (2021)
Chen, Y., et al.: Local-to-global registration for bundle-adjusting neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8264–8273 (2023)
Chen, Z., et al.: NeuRBF: a neural fields representation with adaptive radial basis functions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4182–4194 (2023)
Chng, S.F., Ramasinghe, S., Sherrah, J., Lucey, S.: Gaussian activated neural radiance fields for high fidelity reconstruction and pose estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) European Conference on Computer Vision, pp. 264–280. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19827-4_16
Deng, J., et al.: Nerf-loam: neural implicit representation for large-scale incremental lidar odometry and mapping. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8218–8227 (2023)
Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: radiance fields without neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5501–5510 (2022)
Gao, Z., Dai, W., Zhang, Y.: Adaptive positional encoding for bundle-adjusting neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3284–3294 (2023)
Heo, H., et al.: Robust camera pose refinement for multi-resolution hash encoding. arXiv preprint arXiv:2302.01571 (2023)
Herau, Q., et al.: Moisst: multi-modal optimization of implicit scene for spatiotemporal calibration. arXiv preprint arXiv:2303.03056 (2023)
Hu, W., et al.: Tri-MipRF: Tri-Mip representation for efficient anti-aliasing neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 19774–19783 (2023)
Hwang, I., Kim, J., Kim, Y.M.: Ev-nerf: Event based neural radiance field. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 837–847 (2023)
Jain, A., Tancik, M., Abbeel, P.: Putting nerf on a diet: semantically consistent few-shot view synthesis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5885–5894 (2021)
Jeong, Y., Ahn, S., Choy, C., Anandkumar, A., Cho, M., Park, J.: Self-calibrating neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5846–5854 (2021)
Li, Z., et al.: Neuralangelo: high-fidelity neural surface reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8456–8465 (2023)
Lin, C.H., Ma, W.C., Torralba, A., Lucey, S.: Barf: bundle-adjusting neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5741–5751 (2021)
Lin, Y., et al.: Parallel inversion of neural radiance fields for robust pose estimation. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 9377–9384. IEEE (2023)
Ma, Q., Paudel, D.P., Chhatkuli, A., Van Gool, L.: Continuous pose for monocular cameras in neural implicit representation. arXiv preprint arXiv:2311.17119 (2023)
Max, N.: Optical models for direct volume rendering. IEEE Trans. Visual Comput. Graphics 1(2), 99–108 (1995)
Mehmeti-Göpel, C.H.A., Hartmann, D., Wand, M.: Ringing relus: harmonic distortion analysis of nonlinear feedforward networks. In: International Conference on Learning Representations (2020)
Meuleman, A., et al.: Progressively optimized local radiance fields for robust view synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16539–16548 (2023)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)
Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. (ToG) 41(4), 1–15 (2022)
Ortiz, J., et al.: ISDF: real-time neural signed distance fields for robot perception. arXiv preprint arXiv:2204.02296 (2022)
Park, K., Henzler, P., Mildenhall, B., Barron, J.T., Martin-Brualla, R.: CamP: camera preconditioning for neural radiance fields. ACM Trans. Graph. (TOG) 42(6), 1–11 (2023)
Rahaman, N., et al.: On the spectral bias of neural networks. In: International Conference on Machine Learning, pp. 5301–5310. PMLR (2019)
Rahimi, A., Recht, B.: Random features for large-scale kernel machines. In: Advances in Neural Information Processing Systems, vol. 20 (2007)
Saragadam, V., LeJeune, D., Tan, J., Balakrishnan, G., Veeraraghavan, A., Baraniuk, R.G.: Wire: wavelet implicit neural representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18507–18516 (2023)
Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. Adv. Neural. Inf. Process. Syst. 33, 7462–7473 (2020)
Sucar, E., Liu, S., Ortiz, J., Davison, A.: iMAP: implicit mapping and positioning in real-time. In: Proceedings of the International Conference on Computer Vision (ICCV) (2021)
Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimization: Super-fast convergence for radiance fields reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5459–5469 (2022)
Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. Adv. Neural. Inf. Process. Syst. 33, 7537–7547 (2020)
Wang, P., Chen, X., Chen, T., Venugopalan, S., Wang, Z.: Is attention all NeRF needs? arXiv preprint arXiv:2207.13298 (2022)
Wang, Q., et al.: IBRNet: learning multi-view image-based rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2021)
Wang, Y., Gong, Y., Zeng, Y.: Hyb-NeRF: a multiresolution hybrid encoding for neural radiance fields. arXiv preprint arXiv:2311.12490 (2023)
Wang, Y., Han, Q., Habermann, M., Daniilidis, K., Theobalt, C., Liu, L.: Neus2: fast learning of neural implicit surfaces for multi-view reconstruction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3295–3306 (2023)
Wang, Z., Wu, S., Xie, W., Chen, M., Prisacariu, V.A.: NeRF–: neural radiance fields without known camera parameters. arXiv preprint arXiv:2102.07064 (2021)
Wei, F., et al.: Self-supervised neural articulated shape and appearance models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15816–15826 (2022)
Yang, J., Pavone, M., Wang, Y.: FreeNeRF: improving few-shot neural rendering with free frequency regularization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8254–8263 (2023)
Yen-Chen, L., Florence, P., Barron, J.T., Rodriguez, A., Isola, P., Lin, T.Y.: INeRF: inverting neural radiance fields for pose estimation. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1323–1330. IEEE (2021)
Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelNeRF: neural radiance fields from one or few images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4578–4587 (2021)
Yüce, G., Ortiz-Jiménez, G., Besbinar, B., Frossard, P.: A structured dictionary perspective on implicit neural representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19228–19238 (2022)
Zheng, J., Ramasinghe, S., Li, X., Lucey, S.: Trading positional complexity vs deepness in coordinate networks. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) European Conference on Computer Vision, pp. 144–160. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19812-0_9
Zhong, X., Pan, Y., Behley, J., Stachniss, C.: Shine-mapping: large-scale 3D mapping using sparse hierarchical implicit neural representations. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 8371–8377. IEEE (2023)
Zhou, S., Xie, S., Ishikawa, R., Sakurada, K., Onishi, M., Oishi, T.: INF: implicit neural fusion for LiDAR and camera. In: 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10918–10925. IEEE (2023)
Zhu, Z., et al.: Nice-slam: neural implicit scalable encoding for slam. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12786–12796 (2022)
Acknowledgements
This work was partially supported by JST PRESTO Grant Number JPMJPR22C4. We would also like to express our thanks and gratitude to Mr. Ryuhei Hamaguchi and Mr. Kimihiro Akiyama for their invaluable comments and advice.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xie, S., Zhou, S., Sakurada, K., Ishikawa, R., Onishi, M., Oishi, T. (2025). G\(^2\) fR: Frequency Regularization in Grid-Based Feature Encoding Neural Radiance Fields. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15080. Springer, Cham. https://doi.org/10.1007/978-3-031-72670-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-72670-5_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72669-9
Online ISBN: 978-3-031-72670-5
eBook Packages: Computer ScienceComputer Science (R0)