Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

OmniSSR: Zero-Shot Omnidirectional Image Super-Resolution Using Stable Diffusion Model

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15089))

Included in the following conference series:

Abstract

Omnidirectional images (ODIs) are commonly used in real-world visual tasks, and high-resolution ODIs help improve the performance of related visual tasks. Most existing super-resolution methods for ODIs use end-to-end learning strategies, resulting in inferior realness of generated images and a lack of effective out-of-domain generalization capabilities in training methods. Image generation methods represented by diffusion model provide strong priors for visual tasks and have been proven to be effectively applied to image restoration tasks. Leveraging the image priors of the Stable Diffusion (SD) model, we achieve omnidirectional image Super Resolution with both fidelity and realness, dubbed as OmniSSR. Firstly, we transform the equirectangular projection (ERP) images into tangent projection (TP) images, whose distribution approximates the planar image domain. Then, we use SD to iteratively sample initial high-resolution results. At each denoising iteration, we further correct and update the initial results using the proposed Octadecaplex Tangent Information Interaction (OTII) and Gradient Decomposition (GD) technique to ensure better consistency. Finally, the TP images are transformed back to obtain the final high-resolution results. Our method is zero-shot, requiring no training or fine-tuning. Experiments of our method on two benchmark datasets demonstrate the effectiveness of our proposed method.

R. Li and X. Sheng—Equal contributor.

This work was supported in part by National Science Foundation of China (No. 62372016) and Shenzhen Research Project Grant (No. JSGGZD20220822095800001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This claim will be further illustrated in subsequent experiments.

  2. 2.

    https://github.com/bahjat-kawar/ddrm.

  3. 3.

    Code is at https://github.com/LiRunyi2001/OmniSSR.

References

  1. An, H., Zhang, X.: Perception-oriented omnidirectional image super-resolution based on transformer network. In: Proceedings of the IEEE International Conference on Image Processing (ICIP) (2023)

    Google Scholar 

  2. Arican, Z., Frossard, P.: Joint registration and super-resolution with omnidirectional images. IEEE Trans. Image Process. (TIP) 20, 3151–3162 (2011)

    Google Scholar 

  3. Chan, K.C., Xu, X., Wang, X., Gu, J., Loy, C.C.: GLEAN: generative latent bank for image super-resolution and beyond. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 45, 3154–3468 (2022)

    Google Scholar 

  4. Chan, S.H., Wang, X., Elgendy, O.A.: Plug-and-play ADMM for image restoration: Fixed-point convergence and applications. IEEE Trans. Comput. Imaging 3, 84–98 (2016)

    Article  MathSciNet  Google Scholar 

  5. Chen, Y., Liu, S., Wang, X.: Learning continuous image representation with local implicit image function. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  6. Chen, Z., Zhang, Y., Gu, J., Kong, L., Yang, X., Yu, F.: Dual aggregation transformer for image super-resolution. In: Proceedings of the IEEE/CVF international conference on computer vision (ICCV) (2023)

    Google Scholar 

  7. Cheng, M., et al.: Hybrid transformer and CNN attention network for stereo image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023)

    Google Scholar 

  8. Chong, M., Yanze, W., Xintao, W., Chao, D., Jian, Z., Ying, S.: Metric learning based interactive modulation for real-world super-resolution. In: Proceedings of the European Conference on Computer Vision (ECCV) (2022)

    Google Scholar 

  9. Chung, H., Kim, J., Mccann, M.T., Klasky, M.L., Ye, J.C.: Diffusion posterior sampling for general noisy inverse problems. arXiv preprint arXiv:2209.14687 (2022)

  10. Chung, H., Sim, B., Ye, J.C.: Improving diffusion models for inverse problems using manifold constraints. In: Proceedings of the Advances in Neural Information Processing Systems (NeurIPS) (2022)

    Google Scholar 

  11. Coxeter, H.S.M.: Introduction to Geometry. Wiley (1961)

    Google Scholar 

  12. Daras, G., Dean, J., Jalal, A., Dimakis, A.: Intermediate layer optimization for inverse problems using deep generative models. In: Proceedings of the International Conference on Machine Learning (ICML) (2021)

    Google Scholar 

  13. Deng, X., Wang, H., Xu, M., Guo, Y., Song, Y., Yang, L.: LAU-Net: latitude adaptive upscaling network for omnidirectional image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  14. Deng, X., Wang, H., Xu, M., Li, L., Wang, Z.: Omnidirectional image super-resolution via latitude adaptive network. IEEE Trans. Multimedia (TMM) 25, 4108–4120 (2022)

    Article  Google Scholar 

  15. Ding, K., Ma, K., Wang, S., Simoncelli, E.P.: Image quality assessment: unifying structure and texture similarity. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 44, 2567–2581 (2020)

    Google Scholar 

  16. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 38, 295–307 (2015)

    Article  Google Scholar 

  17. Duan, H., Zhai, G., Min, X., Zhu, Y., Fang, Y., Yang, X.: Perceptual quality assessment of omnidirectional images. In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS) (2018)

    Google Scholar 

  18. Fakour-Sevom, V., Guldogan, E., Kämäräinen, J.K.: 360 panorama super-resolution using deep convolutional networks. In: Proceedings of the International Conference on Computer Vision Theory and Applications (VISAPP) (2018)

    Google Scholar 

  19. Fei, B., et al.: Generative diffusion prior for unified image restoration and enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023)

    Google Scholar 

  20. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Proceedings of the Advances in Neural Information Processing Systems (NeurIPS) (2014)

    Google Scholar 

  21. Guo, L., et al.: Cas-DiffCom: cascaded diffusion model for infant longitudinal super-resolution 3d medical image completion. arXiv preprint arXiv:2402.13776 (2024)

  22. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local NASH equilibrium. In: Proceedings of the Advances in Neural Information Processing Systems (NeurIPS) (2017)

    Google Scholar 

  23. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Proceedings of the Advances in Neural Information Processing Systems (NeurIPS) (2020)

    Google Scholar 

  24. Jiang, Y., Chan, K.C., Wang, X., Loy, C.C., Liu, Z.: Reference-based image and video super-resolution via \(c^2\)-matching. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 45, 8874–8887 (2022)

    Google Scholar 

  25. Kawar, B., Elad, M., Ermon, S., Song, J.: Denoising diffusion restoration models. In: Proceedings of the ICLR Workshop on Deep Generative Models for Highly Structured Data (ICLRW) (2022)

    Google Scholar 

  26. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D Gaussian splatting for real-time radiance field rendering. ACM Trans. Graphics (TOG) 42, 1–14 (2023)

    Article  Google Scholar 

  27. Li, W., Chen, B., Zhang, J.: D3C2-Net: dual-domain deep convolutional coding network for compressive sensing. IEEE Trans. Circ. Syst. Video Technol. (TCSVT), 1 (2024)

    Google Scholar 

  28. Li, Y., Guo, Y., Yan, Z., Huang, X., Duan, Y., Ren, L.: OmniFusion: 360 monocular depth estimation via geometry-aware fusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)

    Google Scholar 

  29. Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: SwinIR: image restoration using Swin transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (ICCVW) (2021)

    Google Scholar 

  30. Liu, J., Wang, Q., Fan, H., Wang, Y., Tang, Y., Qu, L.: Residual denoising diffusion models. arXiv preprint arXiv:2308.13712 (2023)

  31. Lu, Z., Li, J., Liu, H., Huang, C., Zhang, L., Zeng, T.: Transformer for single image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2022)

    Google Scholar 

  32. Lugmayr, A., Danelljan, M., Timofte, R.: NTIRE 2020 challenge on real-world image super-resolution: Methods and results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2020)

    Google Scholar 

  33. Menon, S., Damian, A., Hu, S., Ravi, N., Rudin, C.: PULSE: self-supervised photo upsampling via latent space exploration of generative models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  34. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind’’ image quality analyzer. IEEE Signal Process. Lett. (SPL) 20, 209–212 (2013)

    Article  Google Scholar 

  35. Nishiyama, A., Ikehata, S., Aizawa, K.: 360\(^\circ \) single image super resolution via distortion-aware network and distorted perspective images. In: Proceedings of the IEEE International Conference on Image Processing (ICIP) (2021)

    Google Scholar 

  36. Ozcinar, C., Rana, A., Smolic, A.: Super-resolution of omnidirectional images using adversarial learning. In: Proceedings of the IEEE International Workshop on Multimedia Signal Processing (MMSPW) (2019)

    Google Scholar 

  37. Pan, X., Zhan, X., Dai, B., Lin, D., Loy, C.C., Luo, P.: Exploiting deep generative prior for versatile image restoration and manipulation. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 44, 7474–7489 (2021)

    Article  Google Scholar 

  38. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)

    Google Scholar 

  39. Rout, L., Raoof, N., Daras, G., Caramanis, C., Dimakis, A., Shakkottai, S.: Solving linear inverse problems provably via posterior sampling with latent diffusion models. In: Proceedings of the Advances in Neural Information Processing Systems (NeurIPS) (2023)

    Google Scholar 

  40. Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D.J., Norouzi, M.: Image super-resolution via iterative refinement. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 45, 4713–4726 (2022)

    Google Scholar 

  41. Schönbein, M., Geiger, A.: Omnidirectional 3D reconstruction in augmented Manhattan worlds. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2014)

    Google Scholar 

  42. Song, J., et al.: Loss-guided diffusion models for plug-and-play controllable generation. In: Proceedings of the International Conference on Machine Learning (ICML) (2023)

    Google Scholar 

  43. Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-based generative modeling through stochastic differential equations. In: Proceedings of the International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  44. Sun, X., et al.: OPDN: omnidirectional position-aware deformable network for omnidirectional image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2023)

    Google Scholar 

  45. Sun, Y., Lu, A., Yu, L.: Weighted-to-spherically-uniform quality evaluation for omnidirectional video. IEEE Signal Process. Lett. (SPL) 24, 1408–1412 (2017)

    Google Scholar 

  46. Vaswani, A., et al.: Attention is all you need. In: Proceedings of the Advances in Neural Information Processing Systems (NeurIPS) (2017)

    Google Scholar 

  47. Wang, J., Yue, Z., Zhou, S., Chan, K., Loy, C.: Exploiting diffusion prior for real-world image super-resolution. arXiv preprint arXiv:2305.07015 (2023)

  48. Wang, Q., Li, W., Mou, C., Cheng, X., Zhang, J.: 360DVD: controllable panorama video generation with 360-degree video diffusion model. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2024)

    Google Scholar 

  49. Wang, X., Xie, L., Dong, C., Shan, Y.: Real-ESRGAN: training real-world blind super-resolution with pure synthetic data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  50. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 63–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_5

    Chapter  Google Scholar 

  51. Wang, Y., Yu, J., Zhang, J.: Zero-shot image restoration using denoising diffusion null-space model. arXiv preprint arXiv:2212.00490 (2022)

  52. Xia, B., et al.: DiffIR: efficient diffusion model for image restoration. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2023)

    Google Scholar 

  53. Xiao, J., Ehinger, K.A., Oliva, A., Torralba, A.: Recognizing scene viewpoint using panoramic place representation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  54. Yagi, Y.: Omnidirectional sensing and its applications. IEICE Transactions on Information and Systems (TOIS) (1999)

    Google Scholar 

  55. Yamazawa, K., Yagi, Y., Yachida, M.: Omnidirectional imaging with hyperboloidal projection. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (1993)

    Google Scholar 

  56. Yang, S., Zhou, Y., Liu, Z., Loy, C.C.: Rerender a video: Zero-shot text-guided video-to-video translation. In: Proceedings of the SIGGRAPH Asia 2023 Conference Papers (SIGGRAPH Asia) (2023)

    Google Scholar 

  57. Yang, S., Mou, C., Yu, J., Wang, Y., Meng, X., Zhang, J.: Neural video fields editing. arXiv preprint arXiv:2312.08882 (2023)

  58. Yinhuai, W., Yujie, H., Jiwen, Y., Jian, Z.: Gan prior based null-space learning for consistent super-resolution. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) (2023)

    Google Scholar 

  59. Yoon, Y., Chung, I., Wang, L., Yoon, K.J.: SphereSR: 360deg image super-resolution with arbitrary projection via continuous spherical image representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)

    Google Scholar 

  60. Yu, F., Wang, X., Cao, M., Li, G., Shan, Y., Dong, C.: OSRT: omnidirectional image super-resolution with distortion-aware transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023)

    Google Scholar 

  61. Yu, J., Zhang, X., Xu, Y., Zhang, J.: Cross: Diffusion model makes controllable, robust and secure image steganography. In: Proceedings of the Advances in Neural Information Processing Systems (NeurIPS) (2023)

    Google Scholar 

  62. Yue, Z., Wang, J., Loy, C.C.: ResShift: efficient diffusion model for image super-resolution by residual shifting. In: Advances in Neural Information Processing Systems (NeurIPS) (2023)

    Google Scholar 

  63. Zhang, K., Liang, J., Van Gool, L., Timofte, R.: Designing a practical degradation model for deep blind image super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  64. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  65. Zhang, W., et al.: Real-world image super-resolution as multi-task learning. In: Advances in Neural Information Processing Systems (NeurIPS) (2023)

    Google Scholar 

  66. Zhang, X., Zhang, Y., Xiong, R., Sun, Q., Zhang, J.: HerosNet: hyperspectral explicable reconstruction and optimal sampling deep network for snapshot compressive imaging. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)

    Google Scholar 

  67. Zhou, Y., Yu, M., Ma, H., Shao, H., Jiang, G.: Weighted-to-spherically-uniform SSIM objective quality evaluation for panoramic video. In: Proceedings of the IEEE International Conference on Signal Processing (ICSP) (2018)

    Google Scholar 

  68. Zongying, L., et al.: TaxDiff: taxonomic-guided diffusion model for protein sequence generation. arXiv preprint arXiv:2402.17156 (2024)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 13988 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, R., Sheng, X., Li, W., Zhang, J. (2025). OmniSSR: Zero-Shot Omnidirectional Image Super-Resolution Using Stable Diffusion Model. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15089. Springer, Cham. https://doi.org/10.1007/978-3-031-72751-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72751-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72750-4

  • Online ISBN: 978-3-031-72751-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics