Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Cut Out the Middleman: Revisiting Pose-Based Gait Recognition

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Recent pose-based gait recognition methods, which utilize human skeletons as the model input, have demonstrated significant potential in handling variations in clothing and occlusions. However, methods relying on such skeleton to encode pose are constrained mainly by two problems: (1) poor performance caused by the shape loss, and (2) lack of generalizability. Addressing these limitations, we revisit pose-based gait recognition and develop GaitHeat, a heatmap-based framework that largely enhances performance and robustness by utilizing a new modality to encode pose rather than keypoint coordinates. We make our efforts from two aspects, the pipeline and the extraction of multi-channel heatmap features. Specifically, the process of resizing and centering is performed in the RGB space to largely preserve the integrity of heatmap information. To boost the generalization across various datasets further, we propose a pose-guided heatmap alignment module to eliminate the influence of gait-irrelevant covariates. Furthermore, a global-local network incorporating an efficient fusion branch is designed to improve the extraction of semantic information. Compared to skeleton-based methods, GaitHeat exhibits superior performance in learning gait features and demonstrates effective generalization across different datasets. Experiments on three datasets reveal that our proposed method achieves state-of-the-art results for pose-based gait recognition, comparable to that of silhouette-based approaches. All the source code is available at https://github.com/BNU-IVC/FastPoseGait.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chao, H., He, Y., Zhang, J., Feng, J.: Gaitset: regarding gait as a set for cross-view gait recognition. In: Proceedings of the AAAI conference on artificial intelligence. vol. 33, pp. 8126–8133 (2019)

    Google Scholar 

  2. Choutas, V., Weinzaepfel, P., Revaud, J., Schmid, C.: Potion: pose motion representation for action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7024–7033 (2018)

    Google Scholar 

  3. Duan, H., Zhao, Y., Chen, K., Lin, D., Dai, B.: Revisiting skeleton-based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2969–2978 (2022)

    Google Scholar 

  4. Fan, C., Liang, J., Shen, C., Hou, S., Huang, Y., Yu, S.: Opengait: revisiting gait recognition towards better practicality. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9707–9716 (2023)

    Google Scholar 

  5. Fan, C., Ma, J., Jin, D., Shen, C., Yu, S.: Skeletongait: gait recognition using skeleton maps. In: Proceedings of the AAAI Conference on Artificial Intelligence (2024)

    Google Scholar 

  6. Fan, C., et al.: Gaitpart: temporal part-based model for gait recognition. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 14225–14233 (2020)

    Google Scholar 

  7. Fu, Y., Meng, S., Hou, S., Hu, X., Huang, Y.: Gpgait: generalized pose-based gait recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 19595–19604 (2023)

    Google Scholar 

  8. Fu, Y., et al.: Horizontal pyramid matching for person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33, pp. 8295–8302 (2019)

    Google Scholar 

  9. Guo, H., Ji, Q.: Physics-augmented autoencoder for 3D skeleton-based gait recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 19627–19638 (2023)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14, pp. 630–645. Springer (2016). https://doi.org/10.1007/978-3-319-46493-0_38

  12. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737 (2017)

  13. Hou, S., Cao, C., Liu, X., Huang, Y.: Gait lateral network: learning discriminative and compact representations for gait recognition. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IX, pp. 382–398. Springer (2020). https://doi.org/10.1007/978-3-030-58545-7_22

  14. Hou, S., Liu, X., Cao, C., Huang, Y.: Gait quality aware network: toward the interpretability of silhouette-based gait recognition. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  15. Jaderberg, M., et al.: Spatial transformer networks. Adv. Neural Inf. Proce. syst. 28 (2015)

    Google Scholar 

  16. Li, A., Hou, S., Cai, Q., Fu, Y., Huang, Y.: Gait recognition with drones: a benchmark. IEEE Trans. Multi. (2023)

    Google Scholar 

  17. Li, W., et al: An in-depth exploration of person re-identification and gait recognition in cloth-changing conditions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 13824–13833 (2023)

    Google Scholar 

  18. Liang, J., Fan, C., Hou, S., Shen, C., Huang, Y., Yu, S.: Gaitedge: beyond plain end-to-end gait recognition for better practicality. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part V, pp. 375–390. Springer (2022). https://doi.org/10.1007/978-3-031-20065-6_22

  19. Liao, R., Li, Z., Bhattacharyya, S.S., York, G.: Posemapgait: a model-based gait recognition method with pose estimation maps and graph convolutional networks. Neurocomputing 501, 514–528 (2022)

    Article  Google Scholar 

  20. Liao, R., Yu, S., An, W., Huang, Y.: A model-based gait recognition method with body pose and human prior knowledge. Pattern Recogn. 98, 107069 (2020)

    Article  Google Scholar 

  21. Lin, B., Zhang, S., Yu, X.: Gait recognition via effective global-local feature representation and local temporal aggregation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14648–14656 (2021)

    Google Scholar 

  22. Liu, M., Yuan, J.: Recognizing human actions as the evolution of pose estimation maps. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1159–1168 (2018)

    Google Scholar 

  23. Luo, H., Gu, Y., Liao, X., Lai, S., Jiang, W.: Bag of tricks and a strong baseline for deep person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  24. Makihara, Y., Nixon, M.S., Yagi, Y.: Gait recognition: databases, representations, and applications. Comput. Vision Ref. Guide 1–13 (2020)

    Google Scholar 

  25. Meng, S., Fu, Y., Hou, S., Cao, C., Liu, X., Huang, Y.: Fastposegait: A toolbox and benchmark for efficient pose-based gait recognition. arXiv preprint arXiv:2309.00794 (2023)

  26. Pinyoanuntapong, E., Ali, A., Wang, P., Lee, M., Chen, C.: Gaitmixer: skeleton-based gait representation learning via wide-spectrum multi-axial mixer. arXiv preprint arXiv:2210.15491 (2022)

  27. Sepas-Moghaddam, A., Etemad, A.: Deep gait recognition: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 45(1), 264–284 (2022)

    Article  Google Scholar 

  28. Shen, C., Fan, C., Wu, W., Wang, R., Huang, G.Q., Yu, S.: Lidargait: benchmarking 3D gait recognition with point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1054–1063 (2023)

    Google Scholar 

  29. Shiraga, K., Makihara, Y., Muramatsu, D., Echigo, T., Yagi, Y.: Geinet: view-invariant gait recognition using a convolutional neural network. In: 2016 International Conference on Biometrics (ICB), pp. 1–8. IEEE (2016)

    Google Scholar 

  30. Sivarathinabala, M., Abirami, S., Baskaran, R.: A study on security and surveillance system using gait recognition. Intell. Tech. Sign. Proce. Multi. Secur. 227–252 (2017)

    Google Scholar 

  31. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5686–5696 (2019). https://doi.org/10.1109/CVPR.2019.00584

  32. Takemura, N., Makihara, Y., Muramatsu, D., Echigo, T., Yagi, Y.: Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition. IPSJ Trans. Comput. Vision Appl. 10, 1–14 (2018)

    Google Scholar 

  33. Teepe, T., Gilg, J., Herzog, F., Hörmann, S., Rigoll, G.: Towards a deeper understanding of skeleton-based gait recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1569–1577 (2022)

    Google Scholar 

  34. Teepe, T., Khan, A., Gilg, J., Herzog, F., Hörmann, S., Rigoll, G.: Gaitgraph: graph convolutional network for skeleton-based gait recognition. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 2314–2318. IEEE (2021)

    Google Scholar 

  35. Wang, M., et al.: Dygait: exploiting dynamic representations for high-performance gait recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13424–13433 (2023)

    Google Scholar 

  36. Wang, Z., Hou, S., Zhang, M., Liu, X., Cao, C., Huang, Y.: Gaitparsing: human semantic parsing for gait recognition. IEEE Trans. Multi. (2023)

    Google Scholar 

  37. Xu, Y., Zhang, J., Zhang, Q., Tao, D.: Vitpose: simple vision transformer baselines for human pose estimation. Adv. Neural. Inf. Process. Syst. 35, 38571–38584 (2022)

    Google Scholar 

  38. Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: 18th International Conference on Pattern Recognition (ICPR’06). vol. 4, pp. 441–444. IEEE (2006)

    Google Scholar 

  39. Zhang, C., Chen, X.P., Han, G.Q., Liu, X.J.: Spatial transformer network on skeleton-based gait recognition. Expert Syst. e13244 (2023)

    Google Scholar 

Download references

Acknowledgement

This work is jointly supported by National Natural Science Foundation of China (62276025, 62206022), Beijing Municipal Science & Technology Commission (Z231100007423015) and Shenzhen Technology Plan Program (KQTD20170331093217368).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saihui Hou or Xuecai Hu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1377 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fu, Y. et al. (2025). Cut Out the Middleman: Revisiting Pose-Based Gait Recognition. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15089. Springer, Cham. https://doi.org/10.1007/978-3-031-72751-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72751-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72750-4

  • Online ISBN: 978-3-031-72751-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics