Abstract
Modeling and rendering photorealistic avatars is of crucial importance in many applications. Existing methods that build a 3D avatar from visual observations, however, struggle to reconstruct clothed humans. We introduce PhysAvatar, a novel framework that combines inverse rendering with inverse physics to automatically estimate the shape and appearance of a human from multi-view video data along with the physical parameters of the fabric of their clothes. For this purpose, we adopt a mesh-aligned 4D Gaussian technique for spatio-temporal mesh tracking as well as a physically based inverse renderer to estimate the intrinsic material properties. PhysAvatar integrates a physics simulator to estimate the physical parameters of the garments using gradient-based optimization in a principled manner. These novel capabilities enable PhysAvatar to create high-quality novel-view renderings of avatars dressed in loose-fitting clothes under motions and lighting conditions not seen in the training data. This marks a significant advancement towards modeling photorealistic digital humans using physically based inverse rendering with physics in the loop. Our project website is at: https://qingqing-zhao.github.io/PhysAvatar.
Y. Zheng and Q. Zhao—Equal Contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdal, R., et al.: Gaussian shell maps for efficient 3d human generation. arXiv preprint arXiv:2311.17857 (2023)
Abdrashitov, R., Raichstat, K., Monsen, J., Hill, D.: Robust skin weights transfer via weight inpainting. In: SIGGRAPH Asia 2023 Technical Communications, pp. 1–4 (2023)
Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape completion and animation of people. In: ACM SIGGRAPH 2005 Papers, pp. 408–416 (2005)
Bagautdinov, T., et al.: Driving-signal aware full-body avatars. ACM Trans. Graph. (TOG) 40(4), 1–17 (2021)
Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Seminal Graphics Papers: Pushing the Boundaries, vol. 2, pp. 767–778 (2023)
Bashirov, R., et al.: Morf: mobile realistic fullbody avatars from a monocular video. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3545–3555 (2024)
Bergman, A., Kellnhofer, P., Yifan, W., Chan, E., Lindell, D., Wetzstein, G.: Generative neural articulated radiance fields. Adv. Neural. Inf. Process. Syst. 35, 19900–19916 (2022)
Bertiche, H., Madadi, M., Escalera, S.: CLOTH3D: clothed 3D humans. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 344–359. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_21
Bertiche, H., Madadi, M., Escalera, S.: Pbns: physically based neural simulation for unsupervised garment pose space deformation. ACM Trans. Graph. (TOG) 40(6), 1–14 (2021)
Bertiche, H., Madadi, M., Escalera, S.: Neural cloth simulation. ACM Trans. Graph. (TOG) 41(6), 1–14 (2022)
Bertiche, H., Madadi, M., Tylson, E., Escalera, S.: Deepsd: automatic deep skinning and pose space deformation for 3d garment animation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5471–5480 (2021)
Bhat, K.S., Twigg, C.D., Hodgins, J.K., Khosla, P.K., Popović, Z., Seitz, S.M.: Estimating cloth simulation parameters from video. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 37–51 (2003)
Blender Online Coummunity: Blender, blender Foundation. https://www.blender.org/
Chen, B., Shen, Y., Shuai, Q., Zhou, X., Zhou, K., Zheng, Y.: Anidress: animatable loose-dressed avatar from sparse views using garment rigging model. arXiv preprint arXiv:2401.15348 (2024)
Chen, H.Y., Sastry, A., van Rees, W.M., Vouga, E.: Physical simulation of environmentally induced thin shell deformation. ACM Trans. Graph. (TOG) 37(4), 1–13 (2018)
Chen, X., et al.: gdna: towards generative detailed neural avatars. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20427–20437 (2022)
Chen, X., Zheng, Y., Black, M.J., Hilliges, O., Geiger, A.: Snarf: differentiable forward skinning for animating non-rigid neural implicit shapes. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11594–11604 (2021)
Chen, Y., et al.: Uv volumes for real-time rendering of editable free-view human performance. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16621–16631 (2023)
Chentanez, N., Macklin, M., Müller, M., Jeschke, S., Kim, T.Y.: Cloth and skin deformation with a triangle mesh based convolutional neural network. In: Computer Graphics Forum, vol. 39, pp. 123–134. Wiley Online Library (2020)
Clyde, D., Teran, J., Tamstorf, R.: Modeling and data-driven parameter estimation for woven fabrics. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 1–11 (2017)
Contributors, M.: Openmmlab pose estimation toolbox and benchmark (2020). https://github.com/open-mmlab/mmpose
De Luigi, L., Li, R., Guillard, B., Salzmann, M., Fua, P.: Drapenet: garment generation and self-supervised draping. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1451–1460 (2023)
Dong, Z., Chen, X., Yang, J., Black, M.J., Hilliges, O., Geiger, A.: Ag3d: learning to generate 3d avatars from 2d image collections. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14916–14927 (2023)
Feng, Y., Yang, J., Pollefeys, M., Black, M.J., Bolkart, T.: Capturing and animation of body and clothing from monocular video. In: SIGGRAPH Asia 2022 Conference Papers, pp. 1–9 (2022)
Fridovich-Keil, S., Meanti, G., Warburg, F.R., Recht, B., Kanazawa, A.: K-planes: explicit radiance fields in space, time, and appearance. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12479–12488 (2023)
Genay, A., Lécuyer, A., Hachet, M.: Being an avatar “for real’’: a survey on virtual embodiment in augmented reality. IEEE Trans. Visualizat. Comput. Graph. 28(12), 5071–5090 (2021)
Geng, C., Peng, S., Xu, Z., Bao, H., Zhou, X.: Learning neural volumetric representations of dynamic humans in minutes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8759–8770 (2023)
Grigorev, A., Black, M.J., Hilliges, O.: Hood: hierarchical graphs for generalized modelling of clothing dynamics. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16965–16974 (2023)
Grinspun, E., Hirani, A.N., Desbrun, M., Schröder, P.: Discrete shells. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 62–67. Citeseer (2003)
Gundogdu, E., Constantin, V., Seifoddini, A., Dang, M., Salzmann, M., Fua, P.: Garnet: a two-stream network for fast and accurate 3d cloth draping. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8739–8748 (2019)
Guo, J., Li, J., Narain, R., Park, H.S.: Inverse simulation: reconstructing dynamic geometry of clothed humans via optimal control. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14698–14707 (2021)
Habermann, M., Liu, L., Xu, W., Pons-Moll, G., Zollhoefer, M., Theobalt, C.: Hdhumans: a hybrid approach for high-fidelity digital humans. In: Proceedings of the ACM on Computer Graphics and Interactive Techniques, vol. 6, no. 3, pp. 1–23 (2023)
Habermann, M., Liu, L., Xu, W., Zollhoefer, M., Pons-Moll, G., Theobalt, C.: Real-time deep dynamic characters. ACM Trans. Graph. (ToG) 40(4), 1–16 (2021)
Hu, L., et al.: Gaussianavatar: towards realistic human avatar modeling from a single video via animatable 3d gaussians. arXiv preprint arXiv:2312.02134 (2023)
Işık, M., et al.: Humanrf: high-fidelity neural radiance fields for humans in motion. ACM Trans. Graph. (TOG) 42(4), 1–12 (2023). https://doi.org/10.1145/3592415
Jambon, C., Kerbl, B., Kopanas, G., Diolatzis, S., Leimkühler, T., Drettakis, G.: Nerfshop: interactive editing of neural radiance fields. Proc. ACM Comput. Graph. Interact. Tech. 6, 1:1–1:21 (2023).https://doi.org/10.1145/3585499
Jiang, Y., Wang, R., Liu, Z.: A survey of cloth simulation and applications. In: 2008 9th International Conference on Computer-Aided Industrial Design and Conceptual Design, pp. 765–769. IEEE (2008)
Jiang, Y., et al.: Hifi4g: high-fidelity human performance rendering via compact gaussian splatting. arXiv preprint arXiv:2312.03461 (2023)
Kato, H., Ushiku, Y., Harada, T.: Neural 3d mesh renderer. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3907–3916 (2017). https://doi.org/10.1109/CVPR.2018.00411
Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 42(4) (2023)
Keselman, L., Hebert, M.: Approximate differentiable rendering with algebraic surfaces. In: European Conference on Computer Vision, pp. 596–614. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19824-3_35
Komatsu, K.: Human skin model capable of natural shape variation. Vis. Comput. 3, 265–271 (1988)
Korban, M., Li, X.: A survey on applications of digital human avatars toward virtual co-presence. arXiv preprint arXiv:2201.04168 (2022)
Kwon, Y., Kim, D., Ceylan, D., Fuchs, H.: Neural human performer: learning generalizable radiance fields for human performance rendering. Adv. Neural. Inf. Process. Syst. 34, 24741–24752 (2021)
Kwon, Y., Kim, D., Ceylan, D., Fuchs, H.: Neural image-based avatars: generalizable radiance fields for human avatar modeling. In: The Eleventh International Conference on Learning Representations (2023)
Kwon, Y., Liu, L., Fuchs, H., Habermann, M., Theobalt, C.: Deliffas: deformable light fields for fast avatar synthesis. Adv. Neural Inf. Process. Syst. 36 (2023)
Larionov, E., Eckert, M.L., Wolff, K., Stuyck, T.: Estimating cloth elasticity parameters using position-based simulation of compliant constrained dynamics. arXiv preprint arXiv:2212.08790 (2022)
Lassner, C., Zollhofer, M.: Pulsar: efficient sphere-based neural rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1440–1449 (2021)
Lee, D., Kang, H., Lee, I.K.: Clothcombo: modeling inter-cloth interaction for draping multi-layered clothes. ACM Trans. Graph. (TOG) 42(6), 1–13 (2023)
LeVeque, R.J.: Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems. SIAM (2007)
Li, M., et al.: Incremental potential contact: intersection-and inversion-free, large-deformation dynamics. ACM Trans. Graph. 39(4), 49 (2020)
Li, M., Kaufman, D.M., Jiang, C.: Codimensional incremental potential contact. ACM Trans. Graph. (TOG) 40(4), 1–24 (2021)
Li, R., et al.: Tava: template-free animatable volumetric actors (2022)
Li, X., Li, X.R., Li, Y., Feng, W.: Review of cloth modeling and simulation for virtual fitting. Text. Res. J. 93(7–8), 1699–1711 (2023)
Li, Y., Chen, H.Y., Larionov, E., Sarafianos, N., Matusik, W., Stuyck, T.: Diffavatar: simulation-ready garment optimization with differentiable simulation. arXiv preprint arXiv:2311.12194 (2023)
Li, Y., Du, T., Wu, K., Xu, J., Matusik, W.: Diffcloth: differentiable cloth simulation with dry frictional contact. ACM Trans. Graph. (TOG) 42(1), 1–20 (2022)
Li, Z., Zheng, Z., Liu, Y., Zhou, B., Liu, Y.: Posevocab: learning joint-structured pose embeddings for human avatar modeling. arXiv preprint arXiv:2304.13006 (2023)
Li, Z., Zheng, Z., Wang, L., Liu, Y.: Animatable gaussians: learning pose-dependent gaussian maps for high-fidelity human avatar modeling. arXiv preprint arXiv:2311.16096 (2023)
Liu, L., Habermann, M., Rudnev, V., Sarkar, K., Gu, J., Theobalt, C.: Neural actor: neural free-view synthesis of human actors with pose control. ACM Trans. Graph. (TOG) 40(6), 1–16 (2021)
Liu, L., et al.: Neural rendering and reenactment of human actor videos. ACM Trans. Graph. (TOG) 38(5), 1–14 (2019)
Liu, S., Li, T., Chen, W., Li, H.: Soft rasterizer: a differentiable renderer for image-based 3d reasoning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7708–7717 (2019)
Liu, T., Bouaziz, S., Kavan, L.: Quasi-newton methods for real-time simulation of hyperelastic materials. ACM Trans. Graph. (TOG) 36(3), 1–16 (2017)
Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.: Neural volumes: learning dynamic renderable volumes from images. arXiv preprint arXiv:1906.07751 (2019)
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: Smpl: a skinned multi-person linear model. ACM Trans. Graph. (TOG) 34(6) (2015)
Luiten, J., Kopanas, G., Leibe, B., Ramanan, D.: Dynamic 3d gaussians: tracking by persistent dynamic view synthesis. arXiv preprint arXiv:2308.09713 (2023)
Ma, Q., Saito, S., Yang, J., Tang, S., Black, M.J.: Scale: modeling clothed humans with a surface codec of articulated local elements. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16082–16093 (2021)
Ma, Q., Yang, J., Black, M.J., Tang, S.: Neural point-based shape modeling of humans in challenging clothing. In: 2022 International Conference on 3D Vision (3DV), pp. 679–689. IEEE (2022)
Ma, Q., et al.: Learning to dress 3d people in generative clothing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6469–6478 (2020)
Ma, Q., Yang, J., Tang, S., Black, M.J.: The power of points for modeling humans in clothing. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10974–10984 (2021)
Macklin, M., Müller, M., Chentanez, N.: Xpbd: position-based simulation of compliant constrained dynamics. In: Proceedings of the 9th International Conference on Motion in Games, MIG 2016, p. 49–54. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2994258.2994272
Magnenat, T., Laperrière, R., Thalmann, D.: Joint-dependent local deformations for hand animation and object grasping. Technical report, Canadian Inf. Process. Soc (1988)
Mahmood, N., Ghorbani, N., Troje, N.F., Pons-Moll, G., Black, M.J.: AMASS: archive of motion capture as surface shapes. In: ICCV (2019)
Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3d reconstruction in function space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4460–4470 (2019)
Miguel, E., et al.: Data-driven estimation of cloth simulation models. In: Computer Graphics Forum, vol. 31, pp. 519–528. Wiley Online Library (2012)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)
Mixamo. www.mixamo.com
Newcombe, R.A., et al.: Kinectfusion: real-time dense surface mapping and tracking. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality, pp. 127–136. IEEE (2011)
Nimier-David, M., Vicini, D., Zeltner, T., Jakob, W.: Mitsuba 2: a retargetable forward and inverse renderer. ACM Trans. Graph. (TOG) 38(6), 1–17 (2019)
Noguchi, A., Sun, X., Lin, S., Harada, T.: Neural articulated radiance field. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5762–5772 (2021)
Noguchi, A., Sun, X., Lin, S., Harada, T.: Unsupervised learning of efficient geometry-aware neural articulated representations. In: European Conference on Computer Vision, pp. 597–614. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19790-1_36
Pan, X., et al.: Predicting loose-fitting garment deformations using bone-driven motion networks. In: ACM SIGGRAPH 2022 Conference Proceedings, pp. 1–10 (2022)
Pang, H., Zhu, H., Kortylewski, A., Theobalt, C., Habermann, M.: Ash: animatable gaussian splats for efficient and photoreal human rendering. arXiv preprint arXiv:2312.05941 (2023)
Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 165–174 (2019)
Park, K., et al.: Hypernerf: a higher-dimensional representation for topologically varying neural radiance fields. ACM Trans. Graph. (TOG) 40(6), 1–12 (2021)
Pavlakos, G., et al.: Expressive body capture: 3D hands, face, and body from a single image. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10975–10985 (2019)
Peng, S., et al.: Animatable neural radiance fields for modeling dynamic human bodies. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14314–14323 (2021)
Peng, S., et al.: Neural body: implicit neural representations with structured latent codes for novel view synthesis of dynamic humans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9054–9063 (2021)
Peng, T., et al.: Pgn-cloth: physics-based graph network model for 3d cloth animation. Displays 80, 102534 (2023)
Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-nerf: neural radiance fields for dynamic scenes. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10313–10322 (2020). https://doi.org/10.1109/CVPR46437.2021.01018
Saito, S., Yang, J., Ma, Q., Black, M.J.: Scanimate: weakly supervised learning of skinned clothed avatar networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2886–2897 (2021)
Santesteban, I., Otaduy, M.A., Casas, D.: Learning-based animation of clothing for virtual try-on. In: Computer Graphics Forum, vol. 38, pp. 355–366. Wiley Online Library (2019)
Santesteban, I., Otaduy, M.A., Casas, D.: Snug: self-supervised neural dynamic garments. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8140–8150 (2022)
Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4104–4113 (2016)
Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., Zollhöfer, M.: Deepvoxels: learning persistent 3d feature embeddings. In: Proceedings of Computer Vision and Pattern Recognition (CVPR). IEEE (2019)
Sitzmann, V., Zollhöfer, M., Wetzstein, G.: Scene representation networks: continuous 3d-structure-aware neural scene representations. Adv. Neural Inf. Process. Syst. (2019)
Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3d. In: ACM Siggraph 2006 Papers, pp. 835–846 (2006)
Stoll, C., Gall, J., De Aguiar, E., Thrun, S., Theobalt, C.: Video-based reconstruction of animatable human characters. ACM Trans. Graph. (TOG) 29(6), 1–10 (2010)
Stuyck, T., Chen, H.y.: Diffxpbd: differentiable position-based simulation of compliant constraint dynamics. Proc. ACM Comput. Graph. Interact. Tech. 6(3), 1–14 (2023)
Su, S.Y., Yu, F., Zollhöfer, M., Rhodin, H.: A-nerf: articulated neural radiance fields for learning human shape, appearance, and pose. Adv. Neural. Inf. Process. Syst. 34, 12278–12291 (2021)
Su, Z., et al.: Caphy: capturing physical properties for animatable human avatars. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14150–14160 (2023)
Sun, M., et al.: Human 3d avatar modeling with implicit neural representation: a brief survey. In: 2022 14th International Conference on Signal Processing Systems (ICSPS), pp. 818–827. IEEE (2022)
Tamstorf, R., Grinspun, E.: Discrete bending forces and their jacobians. Graph. Models 75(6), 362–370 (2013)
Tang, M., Tong, R., Narain, R., Meng, C., Manocha, D.: A gpu-based streaming algorithm for high-resolution cloth simulation. In: Computer Graphics Forum, vol. 32, pp. 21–30. Wiley Online Library (2013)
Tatarchenko, M., Richter, S.R., Ranftl, R., Li, Z., Koltun, V., Brox, T.: What do single-view 3d reconstruction networks learn? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3405–3414 (2019)
Tewari, A., et al.: State of the art on neural rendering. In: Computer Graphics Forum, vol. 39 (2020). https://doi.org/10.1111/cgf.14022
Tewari, A., et al.: Advances in neural rendering. In: Computer Graphics Forum, vol. 41, pp. 703–735. Wiley Online Library (2022)
Tiwari, G., Sarafianos, N., Tung, T., Pons-Moll, G.: Neural-gif: neural generalized implicit functions for animating people in clothing. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11708–11718 (2021)
Tretschk, E., Tewari, A., Golyanik, V., Zollhöfer, M., Lassner, C., Theobalt, C.: Non-rigid neural radiance fields: reconstruction and novel view synthesis of a dynamic scene from monocular video. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 12939–12950 (2020). https://doi.org/10.1109/ICCV48922.2021.01272
Vassilev, T., Spanlang, B., Chrysanthou, Y.: Fast cloth animation on walking avatars. In: Computer Graphics Forum, vol. 20, pp. 260–267. Wiley Online Library (2001)
Vidaurre, R., Santesteban, I., Garces, E., Casas, D.: Fully convolutional graph neural networks for parametric virtual try-on. In: Computer Graphics Forum, vol. 39, pp. 145–156. Wiley Online Library (2020)
Wang, H.: Gpu-based simulation of cloth wrinkles at submillimeter levels. ACM Trans. Graph. (TOG) 40(4), 1–14 (2021)
Wang, H., O’Brien, J.F., Ramamoorthi, R.: Data-driven elastic models for cloth: modeling and measurement. ACM Trans. Graph. (TOG) 30(4), 1–12 (2011)
Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: Neus: learning neural implicit surfaces by volume rendering for multi-view reconstruction. Adv. Neural. Inf. Process. Syst. 34, 27171–27183 (2021)
Wang, S., Schwarz, K., Geiger, A., Tang, S.: Arah: animatable volume rendering of articulated human sdfs. In: European Conference on Computer Vision, pp. 1–19. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19824-3_1
Wang, Tet al.: Rodin: a generative model for sculpting 3d digital avatars using diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4563–4573 (2023)
Wu, G., et al.: 4d gaussian splatting for real-time dynamic scene rendering. ArXiv arxiv:2310.08528 (2023)
Xiang, D., et al.: Dressing avatars: deep photorealistic appearance for physically simulated clothing. ACM Trans. Graph. (TOG) 41(6), 1–15 (2022)
Xu, Y., Yifan, W., Bergman, A.W., Chai, M., Zhou, B., Wetzstein, G.: Efficient 3d articulated human generation with layered surface volumes. arXiv preprint arXiv:2307.05462 (2023)
Xu, Y., et al.: Gaussian head avatar: ultra high-fidelity head avatar via dynamic gaussians. arXiv preprint arXiv:2312.03029 (2023)
Yang, Z., Zeng, A., Yuan, C., Li, Y.: Effective whole-body pose estimation with two-stages distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4210–4220 (2023)
Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit surfaces. Adv. Neural. Inf. Process. Syst. 34, 4805–4815 (2021)
Yee, K.S., Chen, J.S.: The finite-difference time-domain (fdtd) and the finite-volume time-domain (fvtd) methods in solving maxwell’s equations. IEEE Trans. Antennas Propag. 45(3), 354–363 (1997)
Yifan, W., Serena, F., Wu, S., Öztireli, C., Sorkine-Hornung, O.: Differentiable surface splatting for point-based geometry processing. ACM Trans. Graph. (TOG) 38(6), 1–14 (2019)
Yu, T., et al.: Simulcap: single-view human performance capture with cloth simulation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5504–5514 (2019)
Yuan, Y.J., Sun, Y.T., Lai, Y.K., Ma, Y., Jia, R., Gao, L.: Nerf-editing: geometry editing of neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18353–18364 (2022)
Zeller, C.: Cloth simulation on the gpu. In: ACM SIGGRAPH 2005 Sketches, pp. 39–es (2005)
Zhang, J.X., Lin, G.W.C., Bode, L., Chen, H.Y., Stuyck, T., Larionov, E.: Estimating cloth elasticity parameters from homogenized yarn-level models. arXiv preprint arXiv:2401.15169 (2024)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)
Zhao, F., et al.: Human performance modeling and rendering via neural animated mesh. ACM Trans. Graph. (TOG) 41(6), 1–17 (2022)
Zheng, Z., Huang, H., Yu, T., Zhang, H., Guo, Y., Liu, Y.: Structured local radiance fields for human avatar modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15893–15903 (2022)
Zielonka, W., Bagautdinov, T., Saito, S., Zollhöfer, M., Thies, J., Romero, J.: Drivable 3d gaussian avatars. arXiv preprint arXiv:2311.08581 (2023)
Acknowledgement
We would like to thank Jiayi Eris Zhang for the discussions. This material is based on work that is partially funded by an unrestricted gift from Google, Samsung, an SNF Postdoc Mobility fellowship, ARL grant W911NF-21-2-0104, and a Vannevar Bush Faculty Fellowship.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 2 (mp4 94068 KB)
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zheng, Y. et al. (2025). PhysAvatar: Learning the Physics of Dressed 3D Avatars from Visual Observations. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15095. Springer, Cham. https://doi.org/10.1007/978-3-031-72913-3_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-72913-3_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72912-6
Online ISBN: 978-3-031-72913-3
eBook Packages: Computer ScienceComputer Science (R0)