Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

\(\textrm{D}^4\)-VTON: Dynamic Semantics Disentangling for Differential Diffusion Based Virtual Try-On

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15104))

Included in the following conference series:

  • 198 Accesses

Abstract

In this paper, we introduce \(\textrm{D}^4\)-VTON, an innovative solution for image-based virtual try-on. We address challenges from previous studies, such as semantic inconsistencies before and after garment warping, and reliance on static, annotation-driven clothing parsers. Additionally, we tackle the complexities in diffusion-based VTON models when handling simultaneous tasks like inpainting and denoising. Our approach utilizes two key technologies: Firstly, Dynamic Semantics Disentangling Modules (DSDMs) extract abstract semantic information from garments to create distinct local flows, improving precise garment warping in a self-discovered manner. Secondly, by integrating a Differential Information Tracking Path (DITP), we establish a novel diffusion-based VTON paradigm. This path captures differential information between incomplete try-on inputs and their complete versions, enabling the network to handle multiple degradations independently, thereby minimizing learning ambiguities and achieving realistic results with minimal overhead. Extensive experiments demonstrate that \(\textrm{D}^4\)-VTON significantly outperforms existing methods in both quantitative metrics and qualitative evaluations, demonstrating its capability in generating realistic images and ensuring semantic consistency. Code is available at https://github.com/Jerome-Young/D4-VTON.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For simplicity, we illustrate the case with \(N=3\) in Fig. 2.

References

  1. Bai, S., Zhou, H., Li, Z., Zhou, C., Yang, H.: Single stage virtual try-on via deformable attention flows. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13675, pp. 409–425. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19784-0_24

    Chapter  Google Scholar 

  2. Bińkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying mmd GANs. In: ICLR (2018)

    Google Scholar 

  3. Bookstein, F.L.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE TPAMI 11(6), 567–585 (1989)

    Article  Google Scholar 

  4. Chen, C.Y., Chen, Y.C., Shuai, H.H., Cheng, W.H.: Size does matter: size-aware virtual try-on via clothing-oriented transformation try-on network. In: ICCV, pp. 7513–7522 (2023)

    Google Scholar 

  5. Choi, S., Park, S., Lee, M., Choo, J.: Viton-HD: high-resolution virtual try-on via misalignment-aware normalization. In: CVPR, pp. 14131–14140 (2021)

    Google Scholar 

  6. Du, Y., et al.: One-for-all: towards universal domain translation with a single stylegan. arXiv preprint arXiv:2310.14222 (2023)

  7. Fele, B., Lampe, A., Peer, P., Struc, V.: C-VTON: context-driven image-based virtual try-on network. In: WACV, pp. 3144–3153 (2022)

    Google Scholar 

  8. Ge, Y., Song, Y., Zhang, R., Ge, C., Liu, W., Luo, P.: Parser-free virtual try-on via distilling appearance flows. In: CVPR, pp. 8485–8493 (2021)

    Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS, vol. 27 (2014)

    Google Scholar 

  10. Gou, J., Sun, S., Zhang, J., Si, J., Qian, C., Zhang, L.: Taming the power of diffusion models for high-quality virtual try-on with appearance flow. In: ACM MM, pp. 7599–7607 (2023)

    Google Scholar 

  11. Han, X., Hu, X., Huang, W., Scott, M.R.: Clothflow: a flow-based model for clothed person generation. In: ICCV, pp. 10471–10480 (2019)

    Google Scholar 

  12. Han, X., Wu, Z., Wu, Z., Yu, R., Davis, L.S.: Viton: an image-based virtual try-on network. In: CVPR, pp. 7543–7552 (2018)

    Google Scholar 

  13. He, S., Song, Y.Z., Xiang, T.: Style-based global appearance flow for virtual try-on. In: CVPR, pp. 3470–3479 (2022)

    Google Scholar 

  14. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: NeurIPS, vol. 33, pp. 6840–6851 (2020)

    Google Scholar 

  15. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016)

  16. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: CVPR, pp. 4401–4410 (2019)

    Google Scholar 

  17. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  18. Lee, S., Gu, G., Park, S., Choi, S., Choo, J.: High-resolution virtual try-on with misalignment and occlusion-handled conditions. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13677, pp. 204–219. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19790-1_13

    Chapter  Google Scholar 

  19. Li, Z., Wei, P., Yin, X., Ma, Z., Kot, A.C.: Virtual try-on with pose-garment keypoints guided inpainting. In: ICCV, pp. 22788–22797 (2023)

    Google Scholar 

  20. Li, Z., et al.: Grouplane: end-to-end 3D lane detection with channel-wise grouping. In: ICLR (2024)

    Google Scholar 

  21. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR, pp. 2117–2125 (2017)

    Google Scholar 

  22. Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: a continuous relaxation of discrete random variables. arXiv preprint arXiv:1611.00712 (2016)

  23. Morelli, D., Baldrati, A., Cartella, G., Cornia, M., Bertini, M., Cucchiara, R.: LaDI-VTON: latent diffusion textual-inversion enhanced virtual try-on. In: ACM MM, pp. 8580–8589 (2023)

    Google Scholar 

  24. Morelli, D., Fincato, M., Cornia, M., Landi, F., Cesari, F., Cucchiara, R.: Dress code: high-resolution multi-category virtual try-on. In: CVPR, pp. 2231–2235 (2022)

    Google Scholar 

  25. Parmar, G., Zhang, R., Zhu, J.Y.: On aliased resizing and surprising subtleties in GAN evaluation. In: CVPR, pp. 11410–11420 (2022)

    Google Scholar 

  26. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  27. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR, pp. 10684–10695 (2022)

    Google Scholar 

  28. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  29. Shim, S.H., Chung, J., Heo, J.P.: Towards squeezing-averse virtual try-on via sequential deformation. In: AAAI, vol. 38, pp. 4856–4863 (2024)

    Google Scholar 

  30. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  31. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: ICML, pp. 2256–2265. PMLR (2015)

    Google Scholar 

  32. Song, H., Du, Y., Xiang, T., Dong, J., Qin, J., He, S.: Editing out-of-domain GAN inversion via differential activations. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13677, pp. 1–17. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19790-1_1

    Chapter  Google Scholar 

  33. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. In: ICLR (2020)

    Google Scholar 

  34. Tang, J., Zheng, G., Shi, C., Yang, S.: Contrastive grouping with transformer for referring image segmentation. In: CVPR, pp. 23570–23580 (2023)

    Google Scholar 

  35. Vaswani, A., et al.: Attention is all you need. In: NeurlPS, vol. 30 (2017)

    Google Scholar 

  36. Wang, B., Zheng, H., Liang, X., Chen, Y., Lin, L., Yang, M.: Toward characteristic-preserving image-based virtual try-on network. In: ECCV, pp. 589–604 (2018)

    Google Scholar 

  37. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE TIP 13(4), 600–612 (2004)

    Google Scholar 

  38. Wei, Y., Ji, Z., Wu, X., Bai, J., Zhang, L., Zuo, W.: Inferring and leveraging parts from object shape for improving semantic image synthesis. In: CVPR, pp. 11248–11258 (2023)

    Google Scholar 

  39. Xie, Z., et al.: GP-VTON: towards general purpose virtual try-on via collaborative local-flow global-parsing learning. In: CVPR, pp. 23550–23559 (2023)

    Google Scholar 

  40. Xie, Z., Huang, Z., Zhao, F., Dong, H., Kampffmeyer, M., Liang, X.: Towards scalable unpaired virtual try-on via patch-routed spatially-adaptive GAN. In: NeurIPS, vol. 34, pp. 2598–2610 (2021)

    Google Scholar 

  41. Xu, C., et al.: Learning dynamic alignment via meta-filter for few-shot learning. In: CVPR, pp. 5182–5191 (2021)

    Google Scholar 

  42. Xu, Y., Du, Y., Xiao, W., Xu, X., He, S.: From continuity to editability: inverting GANs with consecutive images. In: ICCV, pp. 13910–13918 (2021)

    Google Scholar 

  43. Yang, B., et al.: Paint by example: exemplar-based image editing with diffusion models. In: CVPR, pp. 18381–18391 (2023)

    Google Scholar 

  44. Yang, H., Zhang, R., Guo, X., Liu, W., Zuo, W., Luo, P.: Towards photo-realistic virtual try-on by adaptively generating-preserving image content. In: CVPR, pp. 7850–7859 (2020)

    Google Scholar 

  45. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR, pp. 586–595 (2018)

    Google Scholar 

  46. Zhou, T., Tulsiani, S., Sun, W., Malik, J., Efros, A.A.: View synthesis by appearance flow. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 286–301. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_18

    Chapter  Google Scholar 

  47. Zhou, Y., Xu, Y., Du, Y., Wen, Q., He, S.: Pro-pulse: learning progressive encoders of latent semantics in GANs for photo upsampling. IEEE TIP 31, 1230–1242 (2022)

    Google Scholar 

Download references

Acknowledgement

This project is supported by the National Natural Science Foundation of China (62102381, 41927805); Shandong Natural Science Foundation (ZR2021QF035); the National Key R&D Program of China (2022ZD0117201); and the China Postdoctoral Science Foundation (2020M682240, 2021T140631).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Du .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 24465 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Z. et al. (2025). \(\textrm{D}^4\)-VTON: Dynamic Semantics Disentangling for Differential Diffusion Based Virtual Try-On. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15104. Springer, Cham. https://doi.org/10.1007/978-3-031-72952-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72952-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72951-5

  • Online ISBN: 978-3-031-72952-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics