Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Zero-Shot Image Feature Consensus with Deep Functional Maps

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15105))

Included in the following conference series:

  • 158 Accesses

Abstract

Correspondences emerge from large-scale vision models trained for generative and discriminative tasks. This has been revealed and benchmarked by computing correspondence maps between pairs of images, using nearest neighbors on the feature grids. Existing work has attempted to improve the quality of these correspondence maps by carefully mixing features from different sources, such as by combining the features of different layers or networks. We point out that a better correspondence strategy is available, which directly imposes structure on the correspondence field: the functional map. Wielding this simple mathematical tool, we lift the correspondence problem from the pixel space to the function space and directly optimize for mappings that are globally coherent. We demonstrate that our technique yields correspondences that are not only smoother but also more accurate, with the possibility of better reflecting the knowledge embedded in the large-scale vision models that we are studying. Our approach sets a new state-of-the-art on various dense correspondence tasks. We also demonstrate our effectiveness in keypoint correspondence and affordance map transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amir, S., Gandelsman, Y., Bagon, S., Dekel, T.: Deep ViT features as dense visual descriptors. arXiv preprint arXiv:2112.05814, 2(3), 4 (2021)

  2. Attaiki, S., Pai, G., Ovsjanikov, M.: DPFM: deep partial functional maps (2021)

    Google Scholar 

  3. Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: ICCV Workshops (2011)

    Google Scholar 

  4. Burghard, O., Dieckmann, A., Klein, R.: Embedding shapes with green’s functions for global shape matching. Comput. Graph. 68, 1–10 (2017)

    Article  Google Scholar 

  5. Cao, D., Bernard, F.: Unsupervised deep multi-shape matching. In: ECCV (2022)

    Google Scholar 

  6. Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: ICCV (2021)

    Google Scholar 

  7. Cho, S., Hong, S., Jeon, S., Lee, Y., Sohn, K., Kim, S.: Cats: cost aggregation transformers for visual correspondence. In: Advances in Neural Information Processing Systems, vol. 34, pp. 9011–9023 (2021)

    Google Scholar 

  8. Donati, N., Corman, E., Ovsjanikov, M.: Deep orientation-aware functional maps: tackling symmetry issues in shape matching. In: CVPR (2022)

    Google Scholar 

  9. Dusmanu, M., et al.: D2-net: a trainable CNN for joint description and detection of local features. In: CVPR (2019)

    Google Scholar 

  10. Gupta, K., et al.: ASIC: aligning sparse in-the-wild image collections. arXiv preprint arXiv:2303.16201 (2023)

  11. Halimi, O., Litany, O., Rodola, E., Bronstein, A.M., Kimmel, R.: Unsupervised learning of dense shape correspondence. In: CVPR (2019)

    Google Scholar 

  12. Hariharan, B., Arbeláez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours from inverse detectors. In: ICCV (2011)

    Google Scholar 

  13. Hedlin, E., et al.: Unsupervised semantic correspondence using stable diffusion. arXiv preprint arXiv:2305.15581 (2023)

  14. Huang, Q., Wang, F., Guibas, L.: Functional map networks for analyzing and exploring large shape collections. ACM TOG 33(4), 1–11 (2014)

    Google Scholar 

  15. Jeon, S., Kim, S., Min, D., Sohn, K.: Parn: pyramidal affine regression networks for dense semantic correspondence. In: ECCV (2018)

    Google Scholar 

  16. Kim, S., Lin, S., Jeon, S.R., Min, D., Sohn, K.: Recurrent transformer networks for semantic correspondence (2018)

    Google Scholar 

  17. Kovnatsky, A., Bronstein, M.M., Bronstein, A.M., Glashoff, K., Kimmel, R.: Coupled quasi-harmonic bases. In: Computer Graphics Forum (2013)

    Google Scholar 

  18. Learned-Miller, E.G.: Data driven image models through continuous joint alignment. IEEE TPAMI 28(2), 236–250 (2005)

    Article  Google Scholar 

  19. Li, L., Donati, N., Ovsjanikov, M.: Learning multi-resolution functional maps with spectral attention for robust shape matching (2022)

    Google Scholar 

  20. Lin, Y.L., Morariu, V.I., Hsu, W., Davis, L.S.: Jointly optimizing 3D model fitting and fine-grained classification. In: ECCV (2014)

    Google Scholar 

  21. Litany, O., Remez, T., Rodola, E., Bronstein, A., Bronstein, M.: Deep functional maps: structured prediction for dense shape correspondence. In: ICCV (2017)

    Google Scholar 

  22. Liu, C., Yuen, J., Torralba, A.: Sift flow: dense correspondence across scenes and its applications. IEEE TPAMI 33(5), 978–994 (2010)

    Article  Google Scholar 

  23. Liu, Y., Zhu, L., Yamada, M., Yang, Y.: Semantic correspondence as an optimal transport problem. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4463–4472 (2020)

    Google Scholar 

  24. Min, J., Lee, J., Ponce, J., Cho, M.: Spair-71k: a large-scale benchmark for semantic correspondence. arXiv preprint arXiv:1908.10543 (2019)

  25. Myers, A., Teo, C.L., Fermüller, C., Aloimonos, Y.: Affordance detection of tool parts from geometric features (2015)

    Google Scholar 

  26. Nogneng, D., Ovsjanikov, M.: Informative descriptor preservation via commutativity for shape matching. In: Computer Graphics Forum (2017)

    Google Scholar 

  27. Ofri-Amar, D., Geyer, M., Kasten, Y., Dekel, T.: Neural congealing: aligning images to a joint semantic atlas. In: CVPR (2023)

    Google Scholar 

  28. Ono, Y., Trulls, E., Fua, P., Yi, K.M.: LF-Net: learning local features from images (2018)

    Google Scholar 

  29. Oquab, M., et al.: Dinov2: learning robust visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)

  30. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. ACM TOG 31(4), 1–11 (2012)

    Article  Google Scholar 

  31. Peebles, W., Zhu, J.Y., Zhang, R., Torralba, A., Efros, A.A., Shechtman, E.: Gan-supervised dense visual alignment. In: CVPR (2022)

    Google Scholar 

  32. Revaud, J., De Souza, C., Humenberger, M., Weinzaepfel, P.: R2D2: reliable and repeatable detector and descriptor (2019)

    Google Scholar 

  33. Rocco, I., Arandjelovic, R., Sivic, J.: Convolutional neural network architecture for geometric matching. In: CVPR (2017)

    Google Scholar 

  34. Rocco, I., Arandjelović, R., Sivic, J.: End-to-end weakly-supervised semantic alignment. In: CVPR (2018)

    Google Scholar 

  35. Rodolà, E., Cosmo, L., Bronstein, M.M., Torsello, A., Cremers, D.: Partial functional correspondence. In: Computer Graphics Forum (2017)

    Google Scholar 

  36. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR (2022)

    Google Scholar 

  37. Roufosse, J.M., Sharma, A., Ovsjanikov, M.: Unsupervised deep learning for structured shape matching. In: ICCV (2019)

    Google Scholar 

  38. Rubinstein, M., Joulin, A., Kopf, J., Liu, C.: Unsupervised joint object discovery and segmentation in internet images. In: CVPR (2013)

    Google Scholar 

  39. Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: Superglue: learning feature matching with graph neural networks. In: CVPR (2020)

    Google Scholar 

  40. Seo, P.H., Lee, J., Jung, D., Han, B., Cho, M.: Attentive semantic alignment with offset-aware correlation kernels. In: ECCV (2018)

    Google Scholar 

  41. Sharp, N., Attaiki, S., Crane, K., Ovsjanikov, M.: Diffusionnet: discretization agnostic learning on surfaces. ACM TOG 41(3), 1–16 (2022)

    Article  Google Scholar 

  42. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Computer Graphics Forum (2009)

    Google Scholar 

  43. Tang, L., Jia, M., Wang, Q., Phoo, C.P., Hariharan, B.: Emergent correspondence from image diffusion. arXiv preprint arXiv:2306.03881 (2023)

  44. Taniai, T., Sinha, S.N., Sato, Y.: Joint recovery of dense correspondence and cosegmentation in two images. In: CVPR (2016)

    Google Scholar 

  45. Truong, P., Danelljan, M., Gool, L.V., Timofte, R.: Gocor: bringing globally optimized correspondence volumes into your neural network (2020)

    Google Scholar 

  46. Truong, P., Danelljan, M., Timofte, R.: GLU-net: global-local universal network for dense flow and correspondences. In: CVPR (2020)

    Google Scholar 

  47. Truong, P., Danelljan, M., Van Gool, L., Timofte, R.: Learning accurate dense correspondences and when to trust them. In: CVPR (2021)

    Google Scholar 

  48. Truong, P., Danelljan, M., Yu, F., Van Gool, L.: Warp consistency for unsupervised learning of dense correspondences. In: ICCV (2021)

    Google Scholar 

  49. Truong, P., Danelljan, M., Yu, F., Van Gool, L.: Probabilistic warp consistency for weakly-supervised semantic correspondences. In: CVPR (2022)

    Google Scholar 

  50. Tyszkiewicz, M., Fua, P., Trulls, E.: Disk: learning local features with policy gradient (2020)

    Google Scholar 

  51. Wang, F., Huang, Q., Guibas, L.J.: Image co-segmentation via consistent functional maps. In: ICCV (2013)

    Google Scholar 

  52. Wang, F., Huang, Q., Ovsjanikov, M., Guibas, L.J.: Unsupervised multi-class joint image segmentation. In: CVPR (2014)

    Google Scholar 

  53. Yang, Y., Ramanan, D.: Articulated human detection with flexible mixtures of parts. IEEE TPAMI 35(12), 2878–2890 (2012)

    Article  Google Scholar 

  54. Yi, K.M., Trulls, E., Lepetit, V., Fua, P.: Lift: Learned invariant feature transform. In: ECCV (2016)

    Google Scholar 

  55. Zhang, J., et al.: A tale of two features: Stable diffusion complements DINO for zero-shot semantic correspondence. arXiv preprint arXiv:2305.15347 (2023)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinle Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, X., Deng, C., Harley, A.W., Zhu, Y., Guibas, L. (2025). Zero-Shot Image Feature Consensus with Deep Functional Maps. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15105. Springer, Cham. https://doi.org/10.1007/978-3-031-72970-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72970-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72969-0

  • Online ISBN: 978-3-031-72970-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics