Abstract
Tracking multiple objects in a continuous video stream is crucial for many computer vision tasks. It involves detecting and associating objects with their respective identities across successive frames. Despite significant progress made in multiple object tracking (MOT), recent studies have revealed the vulnerability of existing MOT methods to adversarial attacks. Nevertheless, all of these attacks belong to digital attacks that inject pixel-level noise into input images, and are therefore ineffective in physical scenarios. To fill this gap, we propose PapMOT, which can generate physical adversarial patches against MOT for both digital and physical scenarios. Besides attacking the detection mechanism, PapMOT also optimizes a printable patch that can be detected as new targets to mislead the identity association process. Moreover, we introduce a patch enhancement strategy to further degrade the temporal consistency of tracking results across video frames, resulting in more aggressive attacks. We further develop new evaluation metrics to assess the robustness of MOT against such attacks. Extensive evaluations on multiple datasets demonstrate that our PapMOT can successfully attack various architectures of MOT trackers in digital scenarios. We also validate the effectiveness of PapMOT for physical attacks by deploying printed adversarial patches in the real world.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Athalye, A., Engstrom, L., Ilyas, A., Kwok, K.: Synthesizing robust adversarial examples. In: International Conference on Machine Learning (2018)
PaddlePaddle Authors: PaddleDetection, object detection and instance segmentation toolkit based on PaddlePaddle (2019). https://github.com/PaddlePaddle/PaddleDetection
Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the clear mot metrics. EURASIP J. Image Video Process. 2008, 246309 (2008). https://doi.org/10.1155/2008/246309
Cao, J., Weng, X., Khirodkar, R., Pang, J., Kitani, K.: Observation-centric sort: rethinking sort for robust multi-object tracking. arXiv preprint arXiv:2203.14360 (2022)
Chiu, H.K., Li, J., Ambrus, R., Bohg, J.: Probabilistic 3D multi-modal, multi-object tracking for autonomous driving. In: IEEE International Conference on Robotics and Automation (2021)
Chow, K.-H., Liu, L., Gursoy, M.E., Truex, S., Wei, W., Wu, Y.: Understanding object detection through an adversarial lens. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12309, pp. 460–481. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59013-0_23
Dendorfer, P., et al.: MOT20: a benchmark for multi object tracking in crowded scenes. arXiv preprint arXiv:2003.09003 (2020)
Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: a benchmark. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2009)
Du, A., et al.: Physical adversarial attacks on an aerial imagery object detector. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (2022)
Ess, A., Leibe, B., Schindler, K., van Gool, L.: A mobile vision system for robust multi-person tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2008)
Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: YOLOX: exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430 (2021)
Hu, Y.C.T., Kung, B.H., Tan, D.S., Chen, J.C., Hua, K.L., Cheng, W.H.: Naturalistic physical adversarial patch for object detectors. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2021)
Hu, Z., Huang, S., Zhu, X., Sun, F., Zhang, B., Hu, X.: Adversarial texture for fooling person detectors in the physical world. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2022)
Jia, S., Ma, C., Song, Y., Yang, X.: Robust tracking against adversarial attacks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 69–84. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_5
Jia, S., Ma, C., Yao, T., Yin, B., Ding, S., Yang, X.: Exploring frequency adversarial attacks for face forgery detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)
Jia, S., Song, Y., Ma, C., Yang, X.: IoU attack: towards temporally coherent black-box adversarial attack for visual object tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021)
Jia, Y., Lu, Y., Shen, J., Chen, Q.A., Zhong, Z., Wei, T.: Fooling detection alone is not enough: adversarial attack against multiple object tracking. In: International Conference on Learning Representations (2020)
Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logistics Q. 2(1–2), 83–97 (1955)
Leal-Taixé, L., Milan, A., Reid, I., Roth, S., Schindler, K.: MOTChallenge 2015: towards a benchmark for multi-target tracking. arXiv preprint arXiv:1504.01942 (2015)
Lin, D., Chen, Q., Zhou, C., He, K.: TraSA: Tracklet-switch adversarial attacks against multi-object tracking. arXiv preprint arXiv:2111.08954 (2023)
Luisier, F., Blu, T., Unser, M.: Image denoising in mixed Poisson-Gaussian noise. IEEE Trans. Image Process. 20, 696–708 (2010)
Luo, W., Xing, J., Milan, A., Zhang, X., Liu, W., Kim, T.K.: Multiple object tracking: a literature review. Artif. Intell. 293, 103448 (2021)
Milan, A., Leal-Taixé, L., Reid, I., Roth, S., Schindler, K.: MOT16: a benchmark for multi-object tracking. arXiv preprint arXiv:1603.00831 (2016)
Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)
Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Shao, S., et al.: CrowdHuman: a benchmark for detecting human in a crowd. arXiv preprint arXiv:1805.00123 (2018)
Sharif, M., Bhagavatula, S., Bauer, L., Reiter, M.K.: Accessorize to a crime. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (2016)
Thys, S., Van Ranst, W., Goedemé, T.: Fooling automated surveillance cameras: adversarial patches to attack person detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)
Wang, D., et al.: FCA: learning a 3D full-coverage vehicle camouflage for multi-view physical adversarial attack. In: Proceedings of the AAAI Conference on Artificial Intelligence (2022)
Welch, G., Bishop, G., et al.: An introduction to the Kalman filter (1995)
Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: IEEE International Conference on Image Processing (2017)
Xiao, T., Li, S., Wang, B., Lin, L., Wang, X.: Joint detection and identification feature learning for person search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2017)
Xu, H., et al.: Adversarial attacks and defenses in images, graphs and text: a review. Int. J. Autom. Comput. 17, 151–178 (2019). https://doi.org/10.1007/s11633-019-1211-x
Xu, K., et al.: Adversarial t-shirt! evading person detectors in a physical world. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 665–681. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_39
Yang, X., Wei, F., Zhang, H., Zhu, J.: Design and interpretation of universal adversarial patches in face detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 174–191. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_11
Yu, F., et al.: BDD100K: a diverse driving dataset for heterogeneous multitask learning. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)
Zhang, S., Benenson, R., Schiele, B.: CityPersons: a diverse dataset for pedestrian detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2017)
Zhang, Y., et al.: ByteTrack: multi-object tracking by associating every detection box. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision, ECCV 2022. LNCS, vol. 13682, pp. 1–21. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20047-2_1
Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: FairMOT: on the fairness of detection and re-identification in multiple object tracking. Int. J. Comput. Vis. 129, 3069–3087 (2021)
Zhao, Z., Wu, Z., Zhuang, Y., Li, B., Jia, J.: Tracking objects as pixel-wise distributions. In: Avidan, S., Brostow, G., Cisseé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision, ECCV 2022. LNCS, vol. 13682, pp 76–94. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20047-2_5
Zheng, L., Zhang, H., Sun, S., Chandraker, M., Yang, Y., Tian, Q.: Person re-identification in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)
Acknowledgements
This work was supported in part by NSFC (62322113, 62376156).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Long, J. et al. (2025). PapMOT: Exploring Adversarial Patch Attack Against Multiple Object Tracking. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15109. Springer, Cham. https://doi.org/10.1007/978-3-031-72983-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-72983-6_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72982-9
Online ISBN: 978-3-031-72983-6
eBook Packages: Computer ScienceComputer Science (R0)