Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

PapMOT: Exploring Adversarial Patch Attack Against Multiple Object Tracking

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15109))

Included in the following conference series:

  • 198 Accesses

Abstract

Tracking multiple objects in a continuous video stream is crucial for many computer vision tasks. It involves detecting and associating objects with their respective identities across successive frames. Despite significant progress made in multiple object tracking (MOT), recent studies have revealed the vulnerability of existing MOT methods to adversarial attacks. Nevertheless, all of these attacks belong to digital attacks that inject pixel-level noise into input images, and are therefore ineffective in physical scenarios. To fill this gap, we propose PapMOT, which can generate physical adversarial patches against MOT for both digital and physical scenarios. Besides attacking the detection mechanism, PapMOT also optimizes a printable patch that can be detected as new targets to mislead the identity association process. Moreover, we introduce a patch enhancement strategy to further degrade the temporal consistency of tracking results across video frames, resulting in more aggressive attacks. We further develop new evaluation metrics to assess the robustness of MOT against such attacks. Extensive evaluations on multiple datasets demonstrate that our PapMOT can successfully attack various architectures of MOT trackers in digital scenarios. We also validate the effectiveness of PapMOT for physical attacks by deploying printed adversarial patches in the real world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Athalye, A., Engstrom, L., Ilyas, A., Kwok, K.: Synthesizing robust adversarial examples. In: International Conference on Machine Learning (2018)

    Google Scholar 

  2. PaddlePaddle Authors: PaddleDetection, object detection and instance segmentation toolkit based on PaddlePaddle (2019). https://github.com/PaddlePaddle/PaddleDetection

  3. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the clear mot metrics. EURASIP J. Image Video Process. 2008, 246309 (2008). https://doi.org/10.1155/2008/246309

    Article  Google Scholar 

  4. Cao, J., Weng, X., Khirodkar, R., Pang, J., Kitani, K.: Observation-centric sort: rethinking sort for robust multi-object tracking. arXiv preprint arXiv:2203.14360 (2022)

  5. Chiu, H.K., Li, J., Ambrus, R., Bohg, J.: Probabilistic 3D multi-modal, multi-object tracking for autonomous driving. In: IEEE International Conference on Robotics and Automation (2021)

    Google Scholar 

  6. Chow, K.-H., Liu, L., Gursoy, M.E., Truex, S., Wei, W., Wu, Y.: Understanding object detection through an adversarial lens. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12309, pp. 460–481. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59013-0_23

    Chapter  Google Scholar 

  7. Dendorfer, P., et al.: MOT20: a benchmark for multi object tracking in crowded scenes. arXiv preprint arXiv:2003.09003 (2020)

  8. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: a benchmark. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  9. Du, A., et al.: Physical adversarial attacks on an aerial imagery object detector. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (2022)

    Google Scholar 

  10. Ess, A., Leibe, B., Schindler, K., van Gool, L.: A mobile vision system for robust multi-person tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  11. Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: YOLOX: exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430 (2021)

  12. Hu, Y.C.T., Kung, B.H., Tan, D.S., Chen, J.C., Hua, K.L., Cheng, W.H.: Naturalistic physical adversarial patch for object detectors. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2021)

    Google Scholar 

  13. Hu, Z., Huang, S., Zhu, X., Sun, F., Zhang, B., Hu, X.: Adversarial texture for fooling person detectors in the physical world. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2022)

    Google Scholar 

  14. Jia, S., Ma, C., Song, Y., Yang, X.: Robust tracking against adversarial attacks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 69–84. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_5

    Chapter  Google Scholar 

  15. Jia, S., Ma, C., Yao, T., Yin, B., Ding, S., Yang, X.: Exploring frequency adversarial attacks for face forgery detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)

    Google Scholar 

  16. Jia, S., Song, Y., Ma, C., Yang, X.: IoU attack: towards temporally coherent black-box adversarial attack for visual object tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  17. Jia, Y., Lu, Y., Shen, J., Chen, Q.A., Zhong, Z., Wei, T.: Fooling detection alone is not enough: adversarial attack against multiple object tracking. In: International Conference on Learning Representations (2020)

    Google Scholar 

  18. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logistics Q. 2(1–2), 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  19. Leal-Taixé, L., Milan, A., Reid, I., Roth, S., Schindler, K.: MOTChallenge 2015: towards a benchmark for multi-target tracking. arXiv preprint arXiv:1504.01942 (2015)

  20. Lin, D., Chen, Q., Zhou, C., He, K.: TraSA: Tracklet-switch adversarial attacks against multi-object tracking. arXiv preprint arXiv:2111.08954 (2023)

  21. Luisier, F., Blu, T., Unser, M.: Image denoising in mixed Poisson-Gaussian noise. IEEE Trans. Image Process. 20, 696–708 (2010)

    Article  MathSciNet  Google Scholar 

  22. Luo, W., Xing, J., Milan, A., Zhang, X., Liu, W., Kim, T.K.: Multiple object tracking: a literature review. Artif. Intell. 293, 103448 (2021)

    Article  MathSciNet  Google Scholar 

  23. Milan, A., Leal-Taixé, L., Reid, I., Roth, S., Schindler, K.: MOT16: a benchmark for multi-object tracking. arXiv preprint arXiv:1603.00831 (2016)

  24. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  25. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  26. Shao, S., et al.: CrowdHuman: a benchmark for detecting human in a crowd. arXiv preprint arXiv:1805.00123 (2018)

  27. Sharif, M., Bhagavatula, S., Bauer, L., Reiter, M.K.: Accessorize to a crime. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (2016)

    Google Scholar 

  28. Thys, S., Van Ranst, W., Goedemé, T.: Fooling automated surveillance cameras: adversarial patches to attack person detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  29. Wang, D., et al.: FCA: learning a 3D full-coverage vehicle camouflage for multi-view physical adversarial attack. In: Proceedings of the AAAI Conference on Artificial Intelligence (2022)

    Google Scholar 

  30. Welch, G., Bishop, G., et al.: An introduction to the Kalman filter (1995)

    Google Scholar 

  31. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: IEEE International Conference on Image Processing (2017)

    Google Scholar 

  32. Xiao, T., Li, S., Wang, B., Lin, L., Wang, X.: Joint detection and identification feature learning for person search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  33. Xu, H., et al.: Adversarial attacks and defenses in images, graphs and text: a review. Int. J. Autom. Comput. 17, 151–178 (2019). https://doi.org/10.1007/s11633-019-1211-x

    Article  Google Scholar 

  34. Xu, K., et al.: Adversarial t-shirt! evading person detectors in a physical world. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 665–681. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_39

    Chapter  Google Scholar 

  35. Yang, X., Wei, F., Zhang, H., Zhu, J.: Design and interpretation of universal adversarial patches in face detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 174–191. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_11

    Chapter  Google Scholar 

  36. Yu, F., et al.: BDD100K: a diverse driving dataset for heterogeneous multitask learning. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  37. Zhang, S., Benenson, R., Schiele, B.: CityPersons: a diverse dataset for pedestrian detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  38. Zhang, Y., et al.: ByteTrack: multi-object tracking by associating every detection box. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision, ECCV 2022. LNCS, vol. 13682, pp. 1–21. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20047-2_1

  39. Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: FairMOT: on the fairness of detection and re-identification in multiple object tracking. Int. J. Comput. Vis. 129, 3069–3087 (2021)

    Article  Google Scholar 

  40. Zhao, Z., Wu, Z., Zhuang, Y., Li, B., Jia, J.: Tracking objects as pixel-wise distributions. In: Avidan, S., Brostow, G., Cisseé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision, ECCV 2022. LNCS, vol. 13682, pp 76–94. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20047-2_5

  41. Zheng, L., Zhang, H., Sun, S., Chandraker, M., Yang, Y., Tian, Q.: Person re-identification in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSFC (62322113, 62376156).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Yao or Chao Ma .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 41483 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Long, J. et al. (2025). PapMOT: Exploring Adversarial Patch Attack Against Multiple Object Tracking. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15109. Springer, Cham. https://doi.org/10.1007/978-3-031-72983-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72983-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72982-9

  • Online ISBN: 978-3-031-72983-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics