Abstract
Implicit Neural Representation (INR) has become a popular method for representing visual signals (e.g., 2D images and 3D scenes), demonstrating promising results in various downstream applications. Given its potential as a medium for visual signals, exploring the development of a neural blending method that utilizes INRs is a natural progression. Neural blending involves merging two INRs to create a new INR that encapsulates information from both original representations. A direct approach involves applying traditional image editing methods to the INR rendering process. However, this method often results in blending distortions, artifacts, and color shifts, primarily due to the discretization of the underlying pixel grid and the introduction of boundary conditions for solving variational problems. To tackle this issue, we introduce the Neural Poisson Solver, a plug-and-play and universally applicable framework across different signal dimensions for blending visual signals represented by INRs. Our Neural Poisson Solver offers a variational problem-solving approach based on the continuous Poisson equation, demonstrating exceptional performance across various domains. Specifically, we propose a gradient-guided neural solver to represent the solution process of the variational problem, refining the target signal to achieve natural blending results. We also develop a Poisson equation-based loss and optimization scheme to train our solver, ensuring it effectively blends the input INR scenes while preserving their inherent structure and semantic content. The lack of dependence on additional prior knowledge makes our method easily adaptable to various task categories, highlighting its versatility. Comprehensive experimental results validate the robustness of our approach across multiple dimensions and blending tasks. Project: https://ep1phany05.github.io/NeuralPoissonSolver-website/.
D. Wu and H. Zhu—Contributed equally to this work.
This work was supported by NSFC under Grant 62025108 and Tencent Rhino-Bird Joint Research Program RBFR2024009.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Avrahami, O., Lischinski, D., Fried, O.: Blended diffusion for text-driven editing of natural images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 18208–18218 (2022)
Benaim, S., Warburg, F., Christensen, P.E., Belongie, S.: Volumetric disentanglement for 3D scene manipulation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 8667–8677 (2024)
Chen, Y., et al.: UPST-nerf: universal photorealistic style transfer of neural radiance fields for 3D scene. arXiv preprint arXiv:2208.07059 (2022)
Chen, Y., Lu, L., Karniadakis, G.E., Dal Negro, L.: Physics-informed neural networks for inverse problems in nano-optics and metamaterials. Opt. Express 28(8), 11618–11633 (2020)
Chiang, P.Z., Tsai, M.S., Tseng, H.Y., Lai, W.S., Chiu, W.C.: Stylizing 3D scene via implicit representation and hypernetwork. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1475–1484 (2022)
Dessein, A., Smith, W.A., Wilson, R.C., Hancock, E.R.: Seamless texture stitching on a 3D mesh by poisson blending in patches. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 2031–2035. IEEE (2014)
Elder, J.H., Goldberg, R.M.: Image editing in the contour domain. In: Proceedings of 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No. 98CB36231), pp. 374–381. IEEE (1998)
Fan, Z., Jiang, Y., Wang, P., Gong, X., Xu, D., Wang, Z.: Unified implicit neural stylization. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13675, pp. 636–654. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19784-0_37
Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. In: Seminal Graphics Papers: Pushing the Boundaries, vol. 2, pp. 671–678 (2023)
Gao, R., et al.: Objectfolder 2.0: a multisensory object dataset for sim2real transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10598–10608 (2022)
Gong, B., Wang, Y., Han, X., Dou, Q.: Recolornerf: layer decomposed radiance field for efficient color editing of 3D scenes. arXiv preprint arXiv:2301.07958 (2023)
Gordon, O., Avrahami, O., Lischinski, D.: Blended-nerf: zero-shot object generation and blending in existing neural radiance fields. arXiv preprint arXiv:2306.12760 (2023)
Huang, Y.H., He, Y., Yuan, Y.J., Lai, Y.K., Gao, L.: Stylizednerf: consistent 3D scene stylization as stylized nerf via 2D-3D mutual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18342–18352 (2022)
Jain, A., Mildenhall, B., Barron, J.T., Abbeel, P., Poole, B.: Zero-shot text-guided object generation with dream fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 867–876 (2022)
Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., Yang, L.: Physics-informed machine learning. Nat. Rev. Phys. 3(6), 422–440 (2021)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)
Kobayashi, S., Matsumoto, E., Sitzmann, V.: Decomposing nerf for editing via feature field distillation. In: Advances in Neural Information Processing Systems, vol. 35, pp. 23311–23330 (2022)
Lewis, J.: Lifting detail from darkness. In: SIGGRAPH (2001)
Liu, R., Sun, Y., Zhu, J., Tian, L., Kamilov, U.S.: Recovery of continuous 3D refractive index maps from discrete intensity-only measurements using neural fields. Nat. Mach. Intell. 4(9), 781–791 (2022)
Liu, S., Zhang, X., Zhang, Z., Zhang, R., Zhu, J.Y., Russell, B.: Editing conditional radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5773–5783 (2021)
Lu, S., Liu, Y., Kong, A.W.K.: TF-icon: diffusion-based training-free cross-domain image composition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2294–2305 (2023)
Ma, Z., et al.: Cardiacfield: computational echocardiography for universal screening (2023)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)
Morel, J.M., Petro, A.B., Sbert, C.: Fourier implementation of poisson image editing. Pattern Recogn. Lett. 33(3), 342–348 (2012)
Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 165–174 (2019)
Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Trans. Graph. (TOG) 22(3), 313–318 (2003)
Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)
Raissi, M., Yazdani, A., Karniadakis, G.E.: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 367(6481), 1026–1030 (2020)
Rocchini, C., Cignoni, P., Montani, C., Scopigno, R.: Multiple textures stitching and blending on 3D objects. In: Lischinski, D., Larson, G.W. (eds.) EGSR 1999. E, pp. 119–130. Springer, Vienna (1999). https://doi.org/10.1007/978-3-7091-6809-7_12
Rückert, D., Wang, Y., Li, R., Idoughi, R., Heidrich, W.: Neat: neural adaptive tomography. ACM Trans. Graph. (TOG) 41(4), 1–13 (2022)
Shen, S., et al.: Non-line-of-sight imaging via neural transient fields. IEEE Trans. Pattern Anal. Mach. Intell. 43(7), 2257–2268 (2021)
Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. In: Advances in Neural Information Processing Systems, vol. 33, pp. 7462–7473 (2020)
Sitzmann, V., Rezchikov, S., Freeman, B., Tenenbaum, J., Durand, F.: Light field networks: neural scene representations with single-evaluation rendering. In: Advances in Neural Information Processing Systems, vol. 34, pp. 19313–19325 (2021)
Strümpler, Y., Postels, J., Yang, R., Gool, L.V., Tombari, F.: Implicit neural representations for image compression. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13686, pp. 74–91. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19809-0_5
Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. In: Advances in Neural Information Processing Systems, vol. 33, pp. 7537–7547 (2020)
Tewari, A., et al.: Advances in neural rendering. In: Computer Graphics Forum, vol. 41, pp. 703–735. Wiley Online Library (2022)
Wang, C., Chai, M., He, M., Chen, D., Liao, J.: Clip-nerf: text-and-image driven manipulation of neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3835–3844 (2022)
Wu, Q., Tan, J., Xu, K.: Palettenerf: palette-based color editing for nerfs. arXiv preprint arXiv:2212.12871 (2022)
Xu, J., et al.: Nesvor: implicit neural representation for slice-to-volume reconstruction in MRI. IEEE Trans. Med. Imaging 42(6), 1707–1719 (2023)
Yuan, Y.J., Sun, Y.T., Lai, Y.K., Ma, Y., Jia, R., Gao, L.: Nerf-editing: geometry editing of neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18353–18364 (2022)
Zhang, L., Wen, T., Shi, J.: Deep image blending. In: The IEEE Winter Conference on Applications of Computer Vision, pp. 231–240 (2020)
Zhou, H., et al.: Fourier ptychographic microscopy image stack reconstruction using implicit neural representations. Optica 10(12), 1679–1687 (2023)
Zhu, H., Liu, Z., Zhou, Y., Ma, Z., Cao, X.: DNF: diffractive neural field for lensless microscopic imaging. Opt. Express 30(11), 18168–18178 (2022)
Zhu, H., et al.: Disorder-invariant implicit neural representation. arXiv preprint arXiv:2304.00837 (2023)
Zhu, J., Zhu, H., Zhang, Q., Zhu, F., Ma, Z., Cao, X.: Pyramid nerf: frequency guided fast radiance field optimization. Int. J. Comput. Vis. 1–16 (2023)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, D., Zhu, H., Zhang, Q., Li, Y., Ma, Z., Cao, X. (2025). Neural Poisson Solver: A Universal and Continuous Framework for Natural Signal Blending. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15138. Springer, Cham. https://doi.org/10.1007/978-3-031-72989-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-72989-8_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72988-1
Online ISBN: 978-3-031-72989-8
eBook Packages: Computer ScienceComputer Science (R0)