Abstract
By combining natural language understanding, generation capabilities, and breadth of knowledge of large language models with image perception, recent large vision language models (LVLMs) have shown unprecedented visual reasoning capabilities. However, the generated text often suffers from inaccurate grounding in the visual input, resulting in errors such as hallucination of nonexistent scene elements, missing significant parts of the scene, and inferring incorrect attributes of and relationships between objects. To address these issues, we introduce a novel framework, ViGoR (Visual Grounding Through Fine-Grained Reward Modeling) that utilizes fine-grained reward modeling to significantly enhance the visual grounding of LVLMs over pre-trained baselines. This improvement is efficiently achieved using much cheaper human evaluations instead of full supervisions, as well as automated methods. We show the effectiveness of our approach through a variety of evaluation methods and benchmarks. Additionally, we released our human annotation (https://github.com/amazon-science/vigor) comprising 15,440 images and generated text pairs with fine-grained evaluations to contribute to related research in the community.
S. Yan and M. Bai—Equal contribution.
S. Yan—Work done when interning at AWS AI.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alayrac, J.B., et al.: Flamingo: a visual language model for few-shot learning. arXiv preprint arXiv:2204.14198 (2022)
Askell, A., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021)
Awadalla, A., et al.: Openflamingo: an open-source framework for training large autoregressive vision-language models. arXiv preprint arXiv:2308.01390 (2023)
Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python. O’Reilly Media, Sebastopol (2009)
Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901 (2020)
Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9650–9660 (2021)
Chen, X., et al.: PaLI: a jointly-scaled multilingual language-image model. In: The Eleventh International Conference on Learning Representations (2023). https://openreview.net/forum?id=mWVoBz4W0u
Chiang, W.L., et al.: Vicuna: an open-source chatbot impressing GPT-4 with 90%* ChatGPT quality (2023). https://lmsys.org/blog/2023-03-30-vicuna/
Chowdhery, A., et al.: Palm: scaling language modeling with pathways. arXiv preprint arXiv:2204.02311 (2022)
Dai, W., et al.: Instructblip: towards general-purpose vision-language models with instruction tuning (2023)
Driess, D., et al.: Palm-e: an embodied multimodal language model. arXiv preprint arXiv:2303.03378 (2023)
Fu, C., et al.: MME: a comprehensive evaluation benchmark for multimodal large language models. arXiv preprint arXiv:2306.13394 (2023)
Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., Parikh, D.: Making the v in VQA matter: elevating the role of image understanding in visual question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6904–6913 (2017)
Gurari, D., et al.: Vizwiz grand challenge: Answering visual questions from blind people. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3608–3617 (2018)
Hu, E.J., et al.: LoRA: low-rank adaptation of large language models. In: International Conference on Learning Representations (2022). https://openreview.net/forum?id=nZeVKeeFYf9
Li, J., et al.: Fine-tuning multimodal LLMs to follow zero-shot demonstrative instructions. In: The Twelfth International Conference on Learning Representations (2023)
Li, J., Li, D., Savarese, S., Hoi, S.: Blip-2: bootstrapping language-image pre-training with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597 (2023)
Li, L.H., et al.: Grounded language-image pre-training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10965–10975 (2022)
Li, Y., Du, Y., Kun Zhou, J.W., Zhao, W.X., Wen, J.R.: Evaluating object hallucination in large vision-language models. In: The 2023 Conference on Empirical Methods in Natural Language Processing (2023). https://openreview.net/forum?id=xozJw0kZXF
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. In: NeurIPS (2023)
Liu, S., et al.: Grounding dino: marrying dino with grounded pre-training for open-set object detection. arXiv preprint arXiv:2303.05499 (2023)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)
Ouyang, L., et al.: Training language models to follow instructions with human feedback. In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A. (eds.) Advances in Neural Information Processing Systems, vol. 35, pp. 27730–27744. Curran Associates, Inc. (2022). https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
Radford, A., et al.: Learning transferrable visual models from natural language supervision. In: ICML (2021)
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)
Schuhmann, C., et al.: Laion-5b: an open large-scale dataset for training next generation image-text models. In: Advances in Neural Information Processing Systems, vol. 35, pp. 25278–25294 (2022)
Sidorov, O., Hu, R., Rohrbach, M., Singh, A.: TextCaps: a dataset for image captioning with reading comprehension. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 742–758. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_44
Sun, Z., et al.: Aligning large multimodal models with factually augmented RLHF (2023)
Touvron, H., et al.: Llama: open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023)
Touvron, H., et al.: Llama 2: open foundation and fine-tuned chat models (2023)
Workshop, B., et al.: Bloom: a 176b-parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100 (2022)
Ye, Q., et al.: mplug-Owl: modularization empowers large language models with multimodality. arXiv preprint arXiv:2304.14178 (2023)
Yu, T., et al.: Reformulating vision-language foundation models and datasets towards universal multimodal assistants. arXiv preprint arXiv:2310.00653 (2023)
Zhang, Y., Mai, Y., Roberts, J.S.R., Bommasani, R., Dubois, Y., Liang, P.: Helm instruct: a multidimensional instruction following evaluation framework with absolute ratings. https://crfm.stanford.edu/2024/02/18/helm-instruct.html
Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ade20k dataset. In: CVPR (2017)
Zhu, D., Chen, J., Shen, X., Li, X., Elhoseiny, M.: Minigpt-4: enhancing vision-language understanding with advanced large language models. arXiv preprint arXiv:2304.10592 (2023)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yan, S., Bai, M., Chen, W., Zhou, X., Huang, Q., Li, L.E. (2025). ViGoR: Improving Visual Grounding of Large Vision Language Models with Fine-Grained Reward Modeling. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15119. Springer, Cham. https://doi.org/10.1007/978-3-031-73030-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-73030-6_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73029-0
Online ISBN: 978-3-031-73030-6
eBook Packages: Computer ScienceComputer Science (R0)