Abstract
Recent progress in visual generative models enables the generation of high-quality images. To prevent the misuse of generated images, it is important to identify the origin model that generates them. In this work, we study the origin attribution of generated images in a practical setting where only a few images generated by a source model are available and the source model cannot be accessed. The goal is to check if a given image is generated by the source model. We first formulate this problem as a few-shot one-class classification task. To solve the task, we propose OCC-CLIP, a CLIP-based framework for few-shot one-class classification, enabling the identification of an image’s source model, even among multiple candidates. Extensive experiments corresponding to various generative models verify the effectiveness of our OCC-CLIP framework. Furthermore, an experiment based on the recently released DALL\(\cdot \)E-3 API verifies the real-world applicability of our solution. Our source code is available at https://github.com/uwFengyuan/OCC-CLIP.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)
Betker, J., et al.: Improving image generation with better captions. Comput. Sci. 2(3), 8 (2023). https://cdn.openai.com/papers/dall-e-3.pdf
BIDEN, J.R.: Executive order on the safe, secure, and trustworthy development and use of artificial intelligence (2023). https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
Chandrasegaran, K., Tran, NT., Binder, A., Cheung, N.M.: Discovering transferable forensic features for CNN-generated images detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022. ECCV 2022. LNCS, vol. 13675, pp. 671–689. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19784-0_39
Changpinyo, S., Sharma, P., Ding, N., Soricut, R.: Conceptual 12M: pushing web-scale image-text pre-training to recognize long-tail visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3558–3568 (2021)
Chen, J., Sathe, S., Aggarwal, C., Turaga, D.: Outlier detection with autoencoder ensembles. In: Proceedings of the 2017 SIAM International Conference on Data Mining, pp. 90–98. SIAM (2017)
Chen, S., Gu, J., Han, Z., Ma, Y., Torr, P., Tresp, V.: Benchmarking robustness of adaptation methods on pre-trained vision-language models. In: Advances in Neural Information Processing Systems. vol. 36 (2024)
Cheng, H., et al.: Unveiling typographic deceptions: Insights of the typographic vulnerability in large vision-language model. arXiv. org
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Ding, Y., Thakur, N., Li, B.: Does a GAN leave distinct model-specific fingerprints. In: Proceedings of the BMVC (2021)
Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Frikha, A., Krompaß, D., Köpken, H.G., Tresp, V.: Few-shot one-class classification via meta-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 35, pp. 7448–7456 (2021)
Girish, S., Suri, S., Rambhatla, S.S., Shrivastava, A.: Towards discovery and attribution of open-world GAN generated images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14094–14103 (2021)
Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)
Gu, J.: Responsible generative AI: What to generate and what not. arXiv preprint arXiv:2404.05783 (2024)
Gu, J., et al.: A systematic survey of prompt engineering on vision-language foundation models. arXiv preprint arXiv:2307.12980 (2023)
Gu, J., Tresp, V.: Improving the robustness of capsule networks to image affine transformations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7285–7293 (2020)
Gu, J., Tresp, V., Qin, Y.: Are vision transformers robust to patch perturbations?. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. LNCS, vol. 13672, pp. 404–421. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19775-8_24
Gu, S., et al.: Vector quantized diffusion model for text-to-image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10696–10706 (2022)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Jia, X., et al.: Revisiting and exploring efficient fast adversarial training via LAW: Lipschitz regularization and auto weight averaging. IEEE Trans. Inf. Forensics Secur. 19, 8125–8139 (2024)
Kang, M., et al.: Scaling up GANs for text-to-image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10124–10134 (2023)
Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)
Kim, C., Ren, Y., Yang, Y.: Decentralized attribution of generative models. arXiv preprint arXiv:2010.13974 (2020)
Kingma, D.P., Welling, M., et al.: An introduction to variational autoencoders. Found. Trends® Mach. Learn. 12(4), 307–392 (2019)
Laszkiewicz, M., Ricker, J., Lederer, J., Fischer, A.: Single-model attribution via final-layer inversion. arXiv preprint arXiv:2306.06210 (2023)
LeCun, Y., Cortes, C., Burges, C., et al.: MNIST handwritten digit database (2010)
Li, H., Shen, C., Torr, P., Tresp, V., Gu, J.: Self-discovering interpretable diffusion latent directions for responsible text-to-image generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12006–12016 (2024)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, R., Khakzar, A., Gu, J., Chen, Q., Torr, P., Pizzati, F.: Latent guard: a safety framework for text-to-image generation. arXiv preprint arXiv:2404.08031 (2024)
Liu, X., Zhu, Y., Gu, J., Lan, Y., Yang, C., Qiao, Y.: MM-SafetyBench: A benchmark for safety evaluation of multimodal large language models. arXiv preprint arXiv:2311.17600 (2023)
Liu, X., et al.: Watermark vaccine: adversarial attacks to prevent watermark removal. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022. ECCV 2022. LNCS, vol. 13674, pp. 1–17. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19781-9_1
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)
Luo, L., Chen, Z., Chen, M., Zeng, X., Xiong, Z.: Reversible image watermarking using interpolation technique. IEEE Trans. Inf. Forensics Secur. 5(1), 187–193 (2009)
Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)
Mandelli, S., Bonettini, N., Bestagini, P., Tubaro, S.: Detecting GAN-generated images by orthogonal training of multiple CNNs. In: 2022 IEEE International Conference on Image Processing (ICIP), pp. 3091–3095. IEEE (2022)
Nichol, A., et al.: GLIDE: Towards photorealistic image generation and editing with text-guided diffusion models. arXiv preprint arXiv:2112.10741 (2021)
Oussidi, A., Elhassouny, A.: Deep generative models: survey. In: 2018 International Conference on Intelligent Systems and Computer Vision (ISCV), pp. 1–8. IEEE (2018)
Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2337–2346 (2019)
Pereira, S., Pun, T.: Robust template matching for affine resistant image watermarks. IEEE Trans. Image Process. 9(6), 1123–1129 (2000)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)
Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: International Conference on Machine Learning, pp. 1278–1286. PMLR (2014)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)
Sabokrou, M., Khalooei, M., Fathy, M., Adeli, E.: Adversarially learned one-class classifier for novelty detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3379–3388 (2018)
Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language understanding. Adv. Neural. Inf. Process. Syst. 35, 36479–36494 (2022)
Sauer, A., Karras, T., Laine, S., Geiger, A., Aila, T.: StyleGAN-T: Unlocking the power of GANs for fast large-scale text-to-image synthesis. arXiv preprint arXiv:2301.09515 (2023)
Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12
Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)
Schuhmann, C., et al.: LAION-5B: an open large-scale dataset for training next generation image-text models. Adv. Neural. Inf. Process. Syst. 35, 25278–25294 (2022)
Schuhmann, C., et al.: LAION-400M: Open dataset of clip-filtered 400 million image-text pairs. arXiv preprint arXiv:2111.02114 (2021)
Sha, Z., Li, Z., Yu, N., Zhang, Y.: DE-FAKE: detection and attribution of fake images generated by text-to-image generation models. In: Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, pp. 3418–3432 (2023)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502 (2020)
Swanson, M.D., Zhu, B., Tewfik, A.H.: Transparent robust image watermarking. In: Proceedings of 3rd IEEE International Conference on Image Processing. vol. 3, pp. 211–214. IEEE (1996)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)
Tancik, M., Mildenhall, B., Ng, R.: StegaStamp: invisible hyperlinks in physical photographs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2117–2126 (2020)
Tao, M., Bao, B.K., Tang, H., Xu, C.: GALIP: generative adversarial clips for text-to-image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14214–14223 (2023)
Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning, pp. 10347–10357. PMLR (2021)
Touvron, H., Cord, M., Sablayrolles, A., Synnaeve, G., Jégou, H.: Going deeper with image transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 32–42 (2021)
Wang, S.Y., Wang, O., Zhang, R., Owens, A., Efros, A.A.: CNN-generated images are surprisingly easy to spot... for now. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8695–8704 (2020)
Wang, Z., Chen, C., Zeng, Y., Lyu, L., Ma, S.: Alteration-free and model-agnostic origin attribution of generated images. arXiv preprint arXiv:2305.18439 (2023)
Wu, B., Gu, J., Li, Z., Cai, D., He, X., Liu, W.: Towards efficient adversarial training on vision transformers. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022. ECCV 2022. LNCS, vol. 13673, pp. 307–325. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19778-9_18
Young, P., Lai, A., Hodosh, M., Hockenmaier, J.: From image descriptions to visual denotations: new similarity metrics for semantic inference over event descriptions. Trans. Assoc. Computat. Linguist. 2, 67–78 (2014)
Yu, N., Davis, L.S., Fritz, M.: Attributing fake images to GANs: learning and analyzing GAN fingerprints. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7556–7566 (2019)
Yu, N., Skripniuk, V., Abdelnabi, S., Fritz, M.: Artificial fingerprinting for generative models: Rooting deepfake attribution in training data. In: Proceedings of the IEEE/CVF International conference on computer vision, pp. 14448–14457 (2021)
Yu, N., Skripniuk, V., Chen, D., Davis, L., Fritz, M.: Responsible disclosure of generative models using scalable fingerprinting. arXiv preprint arXiv:2012.08726 (2020)
Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Learning to prompt for vision-language models. Int. J. Comput. Vision 130(9), 2337–2348 (2022)
Acknowledgement
This work is supported by the UKRI grant: Turing AI Fellowship EP/W002981/1, EPSRC/MURI grant: EP/N019474/1. We thank the Royal Academy of Engineering.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, F., Luo, H., Li, Y., Torr, P., Gu, J. (2025). Which Model Generated This Image? A Model-Agnostic Approach for Origin Attribution. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15120. Springer, Cham. https://doi.org/10.1007/978-3-031-73033-7_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-73033-7_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73032-0
Online ISBN: 978-3-031-73033-7
eBook Packages: Computer ScienceComputer Science (R0)