Abstract
Affordance denotes the potential interactions inherent in objects. The perception of affordance can enable intelligent agents to navigate and interact with new environments efficiently. Weakly supervised affordance grounding teaches agents the concept of affordance without costly pixel-level annotations, but with exocentric images. Although recent advances in weakly supervised affordance grounding yielded promising results, there remain challenges including the requirement for paired exocentric and egocentric image dataset, and the complexity in grounding diverse affordances for a single object. To address them, we propose INTeraction Relationship-aware weakly supervised Affordance grounding (INTRA). Unlike prior arts, INTRA recasts this problem as representation learning to identify unique features of interactions through contrastive learning with exocentric images only, eliminating the need for paired datasets. Moreover, we leverage vision-language model embeddings for performing affordance grounding flexibly with any text, designing text-conditioned affordance map generation to reflect interaction relationship for contrastive learning and enhancing robustness with our text synonym augmentation. Our method outperformed prior arts on diverse datasets such as AGD20K, IIT-AFF, CAD and UMD. Additionally, experimental results demonstrate that our method has remarkable domain scalability for synthesized images/illustrations and is capable of performing affordance grounding for novel interactions and objects. Project page: https://jeeit17.github.io/INTRA.
J. H. Jang—H. Seo—Authors contributed equally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achiam, J., et al.: GPT-4 technical report. arXiv preprint arXiv:2303.08774 (2023)
Ahn, M., et al.: Do as I can and not as I say: grounding language in robotic affordances. arXiv:2204.01691 (2022)
Ahn, M., et al.: Do as I can, not as I say: grounding language in robotic affordances. arXiv:2204.01691 (2022)
Amir, S., Gandelsman, Y., Bagon, S., Dekel, T.: Deep ViT features as dense visual descriptors. arXiv:2112.05814 (2021)
Ardón, P., Pairet, È., Lohan, K.S., Ramamoorthy, S., Petrick, R.: Affordances in robotic tasks–a survey. arXiv:2004.07400 (2020)
Ardón, P., Pairet, E., Petrick, R.P., Ramamoorthy, S., Lohan, K.S.: Learning grasp affordance reasoning through semantic relations. RA-L, 4571–4578 (2019)
Bahl, S., Mendonca, R., Chen, L., Jain, U., Pathak, D.: Affordances from human videos as a versatile representation for robotics. In: CVPR, pp. 13778–13790 (2023)
Burke, C.J., Tobler, P.N., Baddeley, M., Schultz, W.: Neural mechanisms of observational learning. PNAS, 14431–14436 (2010)
Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: ICCV, pp. 9650–9660 (2021)
Chen, J., Gao, D., Lin, K.Q., Shou, M.Z.: Affordance grounding from demonstration video to target image. In: CVPR, pp. 6799–6808 (2023)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607 (2020)
Chen, X., He, K.: Exploring simple Siamese representation learning. In: CVPR, pp. 15750–15758 (2021)
Cornia, M., Baraldi, L., Serra, G., Cucchiara, R.: A deep multi-level network for saliency prediction. In: ICPR, pp. 3488–3493 (2016)
Fang, K., Wu, T.L., Yang, D., Savarese, S., Lim, J.J.: Demo2Vec: reasoning object affordances from online videos. In: CVPR, pp. 2139–2147 (2018)
Gao, W., et al.: TS-CAM: token semantic coupled attention map for weakly supervised object localization. In: ICCV, pp. 2886–2895 (2021)
Geng, Y., An, B., Geng, H., Chen, Y., Yang, Y., Dong, H.: RLAfford: end-to-end affordance learning for robotic manipulation. In: ICRA, pp. 5880–5886 (2023)
Gibson, J.: The Ecological Approach to Visual Perception. Resources for ecological psychology, Lawrence Erlbaum Associates (1986)
Hadjivelichkov, D., Zwane, S., Agapito, L., Deisenroth, M.P., Kanoulas, D.: One-shot transfer of affordance regions? AffCorrs! In: CoRL, pp. 550–560 (2023)
Hou, Z., Yu, B., Qiao, Y., Peng, X., Tao, D.: Affordance transfer learning for human-object interaction detection. In: CVPR, pp. 495–504 (2021)
Huang, Y., Cai, M., Li, Z., Sato, Y.: Predicting gaze in egocentric video by learning task-dependent attention transition. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 789–804. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_46
Khosla, P., et al.: Supervised contrastive learning. In: NeurIPS, vol. 33, pp. 18661–18673 (2020)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)
Kümmerer, M., Wallis, T.S., Bethge, M.: DeepGaze II: reading fixations from deep features trained on object recognition. arXiv:1610.01563 (2016)
Li, F., et al.: Mask DINO: towards a unified transformer-based framework for object detection and segmentation. In: CVPR, pp. 3041–3050 (2023)
Li, G., Jampani, V., Sun, D., Sevilla-Lara, L.: LOCATE: localize and transfer object parts for weakly supervised affordance grounding. In: CVPR, pp. 10922–10931 (2023)
Li, J., Li, D., Savarese, S., Hoi, S.: BLIP-2: bootstrapping language-image pre-training with frozen image encoders and large language models. arXiv:2301.12597 (2023)
Li, J., Li, D., Xiong, C., Hoi, S.: BLIP: bootstrapping language-image pre-training for unified vision-language understanding and generation. In: ICML, pp. 12888–12900 (2022)
Li, J., Selvaraju, R., Gotmare, A., Joty, S., Xiong, C., Hoi, S.C.H.: Align before fuse: vision and language representation learning with momentum distillation. In: NeurIPS, pp. 9694–9705 (2021)
Liang, J., et al.: Code as policies: language model programs for embodied control. In: ICRA, pp. 9493–9500 (2023)
Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. In: NeurIPS (2023)
Luo, H., Zhai, W., Zhang, J., Cao, Y., Tao, D.: Grounded affordance from exocentric view. arXiv:2208.13196 (2022)
Luo, H., Zhai, W., Zhang, J., Cao, Y., Tao, D.: Learning affordance grounding from exocentric images. In: CVPR, pp. 2252–2261 (2022)
Luo, H., Zhai, W., Zhang, J., Cao, Y., Tao, D.: Learning visual affordance grounding from demonstration videos. IEEE Trans. Neural Netw. Learn. Syst. (2023)
Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. (2008)
MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297, Oakland, CA, USA (1967)
Mai, J., Yang, M., Luo, W.: Erasing integrated learning: a simple yet effective approach for weakly supervised object localization. In: CVPR, pp. 8766–8775 (2020)
Mees, O., Borja-Diaz, J., Burgard, W.: Grounding language with visual affordances over unstructured data. In: ICRA, pp. 11576–11582 (2023)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: ICLR (2013)
Miller, G.A.: WordNet: a lexical database for English. Commun. ACM, 39–41 (1995)
Myers, A., Teo, C.L., Fermüller, C., Aloimonos, Y.: Affordance detection of tool parts from geometric features. In: ICRA, pp. 1374–1381 (2015)
Nagarajan, T., Feichtenhofer, C., Grauman, K.: Grounded human-object interaction hotspots from video. In: ICCV, pp. 8688–8697 (2019)
Nguyen, A., Kanoulas, D., Caldwell, D.G., Tsagarakis, N.G.: Detecting object affordances with convolutional neural networks. In: IROS, pp. 2765–2770 (2016)
Nguyen, A., Kanoulas, D., Caldwell, D.G., Tsagarakis, N.G.: Object-based affordances detection with convolutional neural networks and dense conditional random fields. In: IROS, pp. 5908–5915 (2017)
Nguyen, T., et al.: Open-vocabulary affordance detection in 3D point clouds. In: IROS, pp. 5692–5698 (2023)
Ning, S., Qiu, L., Liu, Y., He, X.: HOICLIP: efficient knowledge transfer for HOI detection with vision-language models. In: CVPR, pp. 23507–23517 (2023)
Oquab, M., et al.: DINOv2: learning robust visual features without supervision. arXiv:2304.07193 (2023)
Pan, J., et al.: SalGAN: visual saliency prediction with generative adversarial networks. arXiv:1701.01081 (2017)
Pan, X., et al.: Unveiling the potential of structure preserving for weakly supervised object localization. In: CVPR, pp. 11642–11651 (2021)
Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: EMNLP, pp. 1532–1543 (2014)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML, pp. 8748–8763 (2021)
Rana, K., Haviland, J., Garg, S., Abou-Chakra, J., Reid, I., Suenderhauf, N.: SayPlan: grounding large language models using 3D scene graphs for scalable task planning. In: CoRL (2023)
Rashid, A., et al.: Language embedded radiance fields for zero-shot task-oriented grasping. In: CoRL (2023)
Sawatzky, J., Srikantha, A., Gall, J.: Weakly supervised affordance detection. In: CVPR, pp. 2795–2804 (2017)
Singh, I., et al.: ProgPrompt: generating situated robot task plans using large language models. In: ICRA, pp. 11523–11530 (2023)
Tang, J., Zheng, G., Yu, J., Yang, S.: CoTDet: affordance knowledge prompting for task driven object detection. In: ICCV, pp. 3068–3078 (2023)
Wan, B., Tuytelaars, T.: Exploiting CLIP for zero-shot HOI detection requires knowledge distillation at multiple levels. In: WACV, pp. 1805–1815 (2024)
Warren, W.: Perceiving affordances: visual guidance of stair climbing. J. Exp. Psychol. Hum. Percept. Perform., 683–703 (1984)
Xu, R., Chu, F.J., Tang, C., Liu, W., Vela, P.A.: An affordance keypoint detection network for robot manipulation. IEEE RA-L, 2870–2877 (2021)
Xue, Y., Gan, E., Ni, J., Joshi, S., Mirzasoleiman, B.: Investigating the benefits of projection head for representation learning. In: ICLR (2024)
Yu, S., Seo, P.H., Son, J.: Zero-shot referring image segmentation with global-local context features. In: CVPR, pp. 19456–19465 (2023)
Zhang, J., et al.: A tale of two features: stable diffusion complements DINO for zero-shot semantic correspondence. arXiv:2305.15347 (2023)
Zhang, X., et al.: Affordance-driven next-best-view planning for robotic grasping. In: CoRL (2023)
Zhao, X., Li, M., Weber, C., Hafez, M.B., Wermter, S.: Chat with the environment: interactive multimodal perception using large language models. arXiv:2303.08268 (2023)
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR, pp. 2921–2929 (2016)
Zhu, D., Chen, J., Shen, X., Li, X., Elhoseiny, M.: MiniGPT-4: enhancing vision-language understanding with advanced large language models. arXiv:2304.10592 (2023)
Acknowledgements
This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) [NO. RS-2021-II211343, Artificial Intelligence Graduate School Program (Seoul National University)], the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. NRF-2022M3C1A309202211) and AI-Bio Research Grant through Seoul National University. Also, the authors acknowledged the financial support from the BK21 FOUR program of the Education and Research Program for Future ICT Pioneers, Seoul National University.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jang, J.H., Seo, H., Chun, S.Y. (2025). INTRA: Interaction Relationship-Aware Weakly Supervised Affordance Grounding. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15122. Springer, Cham. https://doi.org/10.1007/978-3-031-73039-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-73039-9_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73038-2
Online ISBN: 978-3-031-73039-9
eBook Packages: Computer ScienceComputer Science (R0)