Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

INTRA: Interaction Relationship-Aware Weakly Supervised Affordance Grounding

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Affordance denotes the potential interactions inherent in objects. The perception of affordance can enable intelligent agents to navigate and interact with new environments efficiently. Weakly supervised affordance grounding teaches agents the concept of affordance without costly pixel-level annotations, but with exocentric images. Although recent advances in weakly supervised affordance grounding yielded promising results, there remain challenges including the requirement for paired exocentric and egocentric image dataset, and the complexity in grounding diverse affordances for a single object. To address them, we propose INTeraction Relationship-aware weakly supervised Affordance grounding (INTRA). Unlike prior arts, INTRA recasts this problem as representation learning to identify unique features of interactions through contrastive learning with exocentric images only, eliminating the need for paired datasets. Moreover, we leverage vision-language model embeddings for performing affordance grounding flexibly with any text, designing text-conditioned affordance map generation to reflect interaction relationship for contrastive learning and enhancing robustness with our text synonym augmentation. Our method outperformed prior arts on diverse datasets such as AGD20K, IIT-AFF, CAD and UMD. Additionally, experimental results demonstrate that our method has remarkable domain scalability for synthesized images/illustrations and is capable of performing affordance grounding for novel interactions and objects. Project page: https://jeeit17.github.io/INTRA.

J. H. Jang—H. Seo—Authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achiam, J., et al.: GPT-4 technical report. arXiv preprint arXiv:2303.08774 (2023)

  2. Ahn, M., et al.: Do as I can and not as I say: grounding language in robotic affordances. arXiv:2204.01691 (2022)

  3. Ahn, M., et al.: Do as I can, not as I say: grounding language in robotic affordances. arXiv:2204.01691 (2022)

  4. Amir, S., Gandelsman, Y., Bagon, S., Dekel, T.: Deep ViT features as dense visual descriptors. arXiv:2112.05814 (2021)

  5. Ardón, P., Pairet, È., Lohan, K.S., Ramamoorthy, S., Petrick, R.: Affordances in robotic tasks–a survey. arXiv:2004.07400 (2020)

  6. Ardón, P., Pairet, E., Petrick, R.P., Ramamoorthy, S., Lohan, K.S.: Learning grasp affordance reasoning through semantic relations. RA-L, 4571–4578 (2019)

    Google Scholar 

  7. Bahl, S., Mendonca, R., Chen, L., Jain, U., Pathak, D.: Affordances from human videos as a versatile representation for robotics. In: CVPR, pp. 13778–13790 (2023)

    Google Scholar 

  8. Burke, C.J., Tobler, P.N., Baddeley, M., Schultz, W.: Neural mechanisms of observational learning. PNAS, 14431–14436 (2010)

    Google Scholar 

  9. Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: ICCV, pp. 9650–9660 (2021)

    Google Scholar 

  10. Chen, J., Gao, D., Lin, K.Q., Shou, M.Z.: Affordance grounding from demonstration video to target image. In: CVPR, pp. 6799–6808 (2023)

    Google Scholar 

  11. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607 (2020)

    Google Scholar 

  12. Chen, X., He, K.: Exploring simple Siamese representation learning. In: CVPR, pp. 15750–15758 (2021)

    Google Scholar 

  13. Cornia, M., Baraldi, L., Serra, G., Cucchiara, R.: A deep multi-level network for saliency prediction. In: ICPR, pp. 3488–3493 (2016)

    Google Scholar 

  14. Fang, K., Wu, T.L., Yang, D., Savarese, S., Lim, J.J.: Demo2Vec: reasoning object affordances from online videos. In: CVPR, pp. 2139–2147 (2018)

    Google Scholar 

  15. Gao, W., et al.: TS-CAM: token semantic coupled attention map for weakly supervised object localization. In: ICCV, pp. 2886–2895 (2021)

    Google Scholar 

  16. Geng, Y., An, B., Geng, H., Chen, Y., Yang, Y., Dong, H.: RLAfford: end-to-end affordance learning for robotic manipulation. In: ICRA, pp. 5880–5886 (2023)

    Google Scholar 

  17. Gibson, J.: The Ecological Approach to Visual Perception. Resources for ecological psychology, Lawrence Erlbaum Associates (1986)

    Google Scholar 

  18. Hadjivelichkov, D., Zwane, S., Agapito, L., Deisenroth, M.P., Kanoulas, D.: One-shot transfer of affordance regions? AffCorrs! In: CoRL, pp. 550–560 (2023)

    Google Scholar 

  19. Hou, Z., Yu, B., Qiao, Y., Peng, X., Tao, D.: Affordance transfer learning for human-object interaction detection. In: CVPR, pp. 495–504 (2021)

    Google Scholar 

  20. Huang, Y., Cai, M., Li, Z., Sato, Y.: Predicting gaze in egocentric video by learning task-dependent attention transition. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 789–804. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_46

    Chapter  Google Scholar 

  21. Khosla, P., et al.: Supervised contrastive learning. In: NeurIPS, vol. 33, pp. 18661–18673 (2020)

    Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)

  23. Kümmerer, M., Wallis, T.S., Bethge, M.: DeepGaze II: reading fixations from deep features trained on object recognition. arXiv:1610.01563 (2016)

  24. Li, F., et al.: Mask DINO: towards a unified transformer-based framework for object detection and segmentation. In: CVPR, pp. 3041–3050 (2023)

    Google Scholar 

  25. Li, G., Jampani, V., Sun, D., Sevilla-Lara, L.: LOCATE: localize and transfer object parts for weakly supervised affordance grounding. In: CVPR, pp. 10922–10931 (2023)

    Google Scholar 

  26. Li, J., Li, D., Savarese, S., Hoi, S.: BLIP-2: bootstrapping language-image pre-training with frozen image encoders and large language models. arXiv:2301.12597 (2023)

  27. Li, J., Li, D., Xiong, C., Hoi, S.: BLIP: bootstrapping language-image pre-training for unified vision-language understanding and generation. In: ICML, pp. 12888–12900 (2022)

    Google Scholar 

  28. Li, J., Selvaraju, R., Gotmare, A., Joty, S., Xiong, C., Hoi, S.C.H.: Align before fuse: vision and language representation learning with momentum distillation. In: NeurIPS, pp. 9694–9705 (2021)

    Google Scholar 

  29. Liang, J., et al.: Code as policies: language model programs for embodied control. In: ICRA, pp. 9493–9500 (2023)

    Google Scholar 

  30. Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. In: NeurIPS (2023)

    Google Scholar 

  31. Luo, H., Zhai, W., Zhang, J., Cao, Y., Tao, D.: Grounded affordance from exocentric view. arXiv:2208.13196 (2022)

  32. Luo, H., Zhai, W., Zhang, J., Cao, Y., Tao, D.: Learning affordance grounding from exocentric images. In: CVPR, pp. 2252–2261 (2022)

    Google Scholar 

  33. Luo, H., Zhai, W., Zhang, J., Cao, Y., Tao, D.: Learning visual affordance grounding from demonstration videos. IEEE Trans. Neural Netw. Learn. Syst. (2023)

    Google Scholar 

  34. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. (2008)

    Google Scholar 

  35. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297, Oakland, CA, USA (1967)

    Google Scholar 

  36. Mai, J., Yang, M., Luo, W.: Erasing integrated learning: a simple yet effective approach for weakly supervised object localization. In: CVPR, pp. 8766–8775 (2020)

    Google Scholar 

  37. Mees, O., Borja-Diaz, J., Burgard, W.: Grounding language with visual affordances over unstructured data. In: ICRA, pp. 11576–11582 (2023)

    Google Scholar 

  38. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: ICLR (2013)

    Google Scholar 

  39. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM, 39–41 (1995)

    Google Scholar 

  40. Myers, A., Teo, C.L., Fermüller, C., Aloimonos, Y.: Affordance detection of tool parts from geometric features. In: ICRA, pp. 1374–1381 (2015)

    Google Scholar 

  41. Nagarajan, T., Feichtenhofer, C., Grauman, K.: Grounded human-object interaction hotspots from video. In: ICCV, pp. 8688–8697 (2019)

    Google Scholar 

  42. Nguyen, A., Kanoulas, D., Caldwell, D.G., Tsagarakis, N.G.: Detecting object affordances with convolutional neural networks. In: IROS, pp. 2765–2770 (2016)

    Google Scholar 

  43. Nguyen, A., Kanoulas, D., Caldwell, D.G., Tsagarakis, N.G.: Object-based affordances detection with convolutional neural networks and dense conditional random fields. In: IROS, pp. 5908–5915 (2017)

    Google Scholar 

  44. Nguyen, T., et al.: Open-vocabulary affordance detection in 3D point clouds. In: IROS, pp. 5692–5698 (2023)

    Google Scholar 

  45. Ning, S., Qiu, L., Liu, Y., He, X.: HOICLIP: efficient knowledge transfer for HOI detection with vision-language models. In: CVPR, pp. 23507–23517 (2023)

    Google Scholar 

  46. Oquab, M., et al.: DINOv2: learning robust visual features without supervision. arXiv:2304.07193 (2023)

  47. Pan, J., et al.: SalGAN: visual saliency prediction with generative adversarial networks. arXiv:1701.01081 (2017)

  48. Pan, X., et al.: Unveiling the potential of structure preserving for weakly supervised object localization. In: CVPR, pp. 11642–11651 (2021)

    Google Scholar 

  49. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: EMNLP, pp. 1532–1543 (2014)

    Google Scholar 

  50. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML, pp. 8748–8763 (2021)

    Google Scholar 

  51. Rana, K., Haviland, J., Garg, S., Abou-Chakra, J., Reid, I., Suenderhauf, N.: SayPlan: grounding large language models using 3D scene graphs for scalable task planning. In: CoRL (2023)

    Google Scholar 

  52. Rashid, A., et al.: Language embedded radiance fields for zero-shot task-oriented grasping. In: CoRL (2023)

    Google Scholar 

  53. Sawatzky, J., Srikantha, A., Gall, J.: Weakly supervised affordance detection. In: CVPR, pp. 2795–2804 (2017)

    Google Scholar 

  54. Singh, I., et al.: ProgPrompt: generating situated robot task plans using large language models. In: ICRA, pp. 11523–11530 (2023)

    Google Scholar 

  55. Tang, J., Zheng, G., Yu, J., Yang, S.: CoTDet: affordance knowledge prompting for task driven object detection. In: ICCV, pp. 3068–3078 (2023)

    Google Scholar 

  56. Wan, B., Tuytelaars, T.: Exploiting CLIP for zero-shot HOI detection requires knowledge distillation at multiple levels. In: WACV, pp. 1805–1815 (2024)

    Google Scholar 

  57. Warren, W.: Perceiving affordances: visual guidance of stair climbing. J. Exp. Psychol. Hum. Percept. Perform., 683–703 (1984)

    Google Scholar 

  58. Xu, R., Chu, F.J., Tang, C., Liu, W., Vela, P.A.: An affordance keypoint detection network for robot manipulation. IEEE RA-L, 2870–2877 (2021)

    Google Scholar 

  59. Xue, Y., Gan, E., Ni, J., Joshi, S., Mirzasoleiman, B.: Investigating the benefits of projection head for representation learning. In: ICLR (2024)

    Google Scholar 

  60. Yu, S., Seo, P.H., Son, J.: Zero-shot referring image segmentation with global-local context features. In: CVPR, pp. 19456–19465 (2023)

    Google Scholar 

  61. Zhang, J., et al.: A tale of two features: stable diffusion complements DINO for zero-shot semantic correspondence. arXiv:2305.15347 (2023)

  62. Zhang, X., et al.: Affordance-driven next-best-view planning for robotic grasping. In: CoRL (2023)

    Google Scholar 

  63. Zhao, X., Li, M., Weber, C., Hafez, M.B., Wermter, S.: Chat with the environment: interactive multimodal perception using large language models. arXiv:2303.08268 (2023)

  64. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR, pp. 2921–2929 (2016)

    Google Scholar 

  65. Zhu, D., Chen, J., Shen, X., Li, X., Elhoseiny, M.: MiniGPT-4: enhancing vision-language understanding with advanced large language models. arXiv:2304.10592 (2023)

Download references

Acknowledgements

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) [NO. RS-2021-II211343, Artificial Intelligence Graduate School Program (Seoul National University)], the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. NRF-2022M3C1A309202211) and AI-Bio Research Grant through Seoul National University. Also, the authors acknowledged the financial support from the BK21 FOUR program of the Education and Research Program for Future ICT Pioneers, Seoul National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se Young Chun .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 9243 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jang, J.H., Seo, H., Chun, S.Y. (2025). INTRA: Interaction Relationship-Aware Weakly Supervised Affordance Grounding. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15122. Springer, Cham. https://doi.org/10.1007/978-3-031-73039-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73039-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73038-2

  • Online ISBN: 978-3-031-73039-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics