Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Tuning-Free Image Customization with Image and Text Guidance

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15134))

Included in the following conference series:

  • 127 Accesses

Abstract

Despite significant advancements in image customization with diffusion models, current methods still have several limitations: 1) unintended changes in non-target areas when regenerating the entire image; 2) guidance solely by a reference image or text descriptions; and 3) time-consuming fine-tuning, which limits their practical application. In response, we introduce a tuning-free framework for simultaneous text-image-guided image customization, enabling precise editing of specific image regions within seconds. Our approach preserves the semantic features of the reference image subject while allowing modification of detailed attributes based on text descriptions. To achieve this, we propose an innovative attention blending strategy that blends self-attention features in the UNet decoder during the denoising process. To our knowledge, this is the first tuning-free method that concurrently utilizes text and image guidance for image customization in specific regions. Our approach outperforms previous methods in both human and quantitative evaluations, providing an efficient solution for various practical applications, such as image synthesis, design, and creative photography. Project page: https://zrealli.github.io/TIGIC.

P. Li and Q. Nie—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Avrahami, O., Aberman, K., Fried, O., Cohen-Or, D., Lischinski, D.: Break-a-scene: extracting multiple concepts from a single image. arXiv preprint arXiv:2305.16311 (2023)

  2. Avrahami, O., Fried, O., Lischinski, D.: Blended latent diffusion. ACM Trans. Graph. 42(4), 1–11 (2023)

    Article  Google Scholar 

  3. Avrahami, O., Lischinski, D., Fried, O.: Blended diffusion for text-driven editing of natural images. In: CVPR, pp. 18208–18218 (2022)

    Google Scholar 

  4. Brooks, T., Holynski, A., Efros, A.A.: Instructpix2pix: learning to follow image editing instructions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18392–18402 (2023)

    Google Scholar 

  5. Cao, M., Wang, X., Qi, Z., Shan, Y., Qie, X., Zheng, Y.: Masactrl: tuning-free mutual self-attention control for consistent image synthesis and editing. arXiv preprint arXiv:2304.08465 (2023)

  6. Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9650–9660 (2021)

    Google Scholar 

  7. Chefer, H., Alaluf, Y., Vinker, Y., Wolf, L., Cohen-Or, D.: Attend-and-excite: attention-based semantic guidance for text-to-image diffusion models. arXiv preprint arXiv:2301.13826 (2023)

  8. Chen, W., et al.: Subject-driven text-to-image generation via apprenticeship learning. arXiv preprint arXiv:2304.00186 (2023)

  9. Chen, X., Huang, L., Liu, Y., Shen, Y., Zhao, D., Zhao, H.: Anydoor: zero-shot object-level image customization. arXiv preprint arXiv:2307.09481 (2023)

  10. Cong, W., et al.: Dovenet: deep image harmonization via domain verification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8394–8403 (2020)

    Google Scholar 

  11. Couairon, G., Verbeek, J., Schwenk, H., Cord, M.: Diffedit: diffusion-based semantic image editing with mask guidance. arXiv preprint arXiv:2210.11427 (2022)

  12. Cun, X., Pun, C.M.: Improving the harmony of the composite image by spatial-separated attention module. IEEE Trans. Image Process. 29, 4759–4771 (2020)

    Article  Google Scholar 

  13. Dhariwal, P., Nichol, A.: Diffusion models beat gans on image synthesis. Adv. Neural. Inf. Process. Syst. 34, 8780–8794 (2021)

    Google Scholar 

  14. Gal, R., et al.: An image is worth one word: personalizing text-to-image generation using textual inversion. arXiv preprint arXiv:2208.01618 (2022)

  15. Han, I., Yang, S., Kwon, T., Ye, J.C.: Highly personalized text embedding for image manipulation by stable diffusion. arXiv preprint arXiv:2303.08767 (2023)

  16. Han, L., Li, Y., Zhang, H., Milanfar, P., Metaxas, D., Yang, F.: Svdiff: Compact parameter space for diffusion fine-tuning. arXiv preprint arXiv:2303.11305 (2023)

  17. Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., Cohen-Or, D.: Prompt-to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626 (2022)

  18. Hong, Y., Niu, L., Zhang, J.: Shadow generation for composite image in real-world scenes. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 914–922 (2022)

    Google Scholar 

  19. Jia, X., et al.: Taming encoder for zero fine-tuning image customization with text-to-image diffusion models. arXiv preprint arXiv:2304.02642 (2023)

  20. Kawar, B., et al.: Imagic: text-based real image editing with diffusion models. arXiv preprint arXiv:2210.09276 (2022)

  21. Kumari, N., Zhang, B., Zhang, R., Shechtman, E., Zhu, J.Y.: Multi-concept customization of text-to-image diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1931–1941 (2023)

    Google Scholar 

  22. Li, P., Huang, Q., Ding, Y., Li, Z.: Layerdiffusion:layered controlled image editing with diffusion models. arXiv preprint arXiv:2305.18676 (2023)

  23. Lin, T.Y., et al.: Microsoft coco: common objects in context. In: ECCV 2014, Part V 13, pp. 740–755. Springer, Cham (2014)

    Google Scholar 

  24. Liu, D., Long, C., Zhang, H., Yu, H., Dong, X., Xiao, C.: Arshadowgan: shadow generative adversarial network for augmented reality in single light scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8139–8148 (2020)

    Google Scholar 

  25. Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., Zhu, J.: Dpm-solver++: fast solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095 (2022)

  26. Lu, S., Liu, Y., Kong, A.W.K.: Tf-icon: diffusion-based training-free cross-domain image composition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2294–2305 (2023)

    Google Scholar 

  27. Meng, C., Song, Y., Song, J., Wu, J., Zhu, J.Y., Ermon, S.: Sdedit: image synthesis and editing with stochastic differential equations. arXiv preprint arXiv:2108.01073 (2021)

  28. Mokady, R., Hertz, A., Aberman, K., Pritch, Y., Cohen-Or, D.: Null-text inversion for editing real images using guided diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6038–6047 (2023)

    Google Scholar 

  29. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  30. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125 (2022)

  31. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR, pp. 10684–10695 (2022)

    Google Scholar 

  32. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: MICCAI 2015, Part III 18, pp. 234–241. Springer, Cham (2015)

    Google Scholar 

  33. Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman, K.: Dreambooth: fine tuning text-to-image diffusion models for subject-driven generation. arXiv preprint arXiv:2208.12242 (2022)

  34. Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman, K.: Dreambooth: fine tuning text-to-image diffusion models for subject-driven generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22500–22510 (2023)

    Google Scholar 

  35. Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language understanding. Adv. Neural. Inf. Process. Syst. 35, 36479–36494 (2022)

    Google Scholar 

  36. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. In: International Conference on Learning Representations (2020)

    Google Scholar 

  37. Tripathi, S., Chandra, S., Agrawal, A., Tyagi, A., Rehg, J.M., Chari, V.: Learning to generate synthetic data via compositing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 461–470 (2019)

    Google Scholar 

  38. Tumanyan, N., Geyer, M., Bagon, S., Dekel, T.: Plug-and-play diffusion features for text-driven image-to-image translation. arXiv preprint arXiv:2211.12572 (2022)

  39. Wei, Y., Zhang, Y., Ji, Z., Bai, J., Zhang, L., Zuo, W.: Elite: encoding visual concepts into textual embeddings for customized text-to-image generation. arXiv preprint arXiv:2302.13848 (2023)

  40. Xie, S., Zhang, Z., Lin, Z., Hinz, T., Zhang, K.: Smartbrush: text and shape guided object inpainting with diffusion model. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22428–22437 (2023)

    Google Scholar 

  41. Xue, B., Ran, S., Chen, Q., Jia, R., Zhao, B., Tang, X.: DCCF: deep comprehensible color filter learning framework for high-resolution image harmonization. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, Part VII, pp. 300–316. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20071-7_18

  42. Yang, B., et al.: Paint by example: exemplar-based image editing with diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18381–18391 (2023)

    Google Scholar 

  43. Zhang, L., Wen, T., Min, J., Wang, J., Han, D., Shi, J.: Learning object placement by inpainting for compositional data augmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 566–581. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_34

    Chapter  Google Scholar 

  44. Zhang, L., Wen, T., Shi, J.: Deep image blending. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 231–240 (2020)

    Google Scholar 

  45. Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image diffusion models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3836–3847 (2023)

    Google Scholar 

  46. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  47. Zhang, Y., et al.: Prospect: expanded conditioning for the personalization of attribute-aware image generation. arXiv preprint arXiv:2305.16225 (2023)

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant NO. 62122035)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zheng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 11756 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, P. et al. (2025). Tuning-Free Image Customization with Image and Text Guidance. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15134. Springer, Cham. https://doi.org/10.1007/978-3-031-73116-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73116-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73115-0

  • Online ISBN: 978-3-031-73116-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics