Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Segment and Recognize Anything at Any Granularity

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15106))

Included in the following conference series:

  • 92 Accesses

Abstract

In this work, we introduce Semantic-SAM, an augmented image segmentation foundation for segmenting and recognizing anything at desired granularities. Compared to the foundational segmentation model SAM [31], our model has two unique advantages: (i) granularity-controllability in that the model can produce segmentation masks at any desired granularities, from objects to parts to both; (ii) semantic-awareness in that the model simultaneously predicts semantic labels for masks at different granularities. To enable multi-granularity capabilities, we propose a multi-choice learning scheme, where each click point generates a set of masks at multiple levels of granularity, corresponding to a set of ground-truth masks. To achieve semantic awareness, we consolidate multiple datasets of different levels of granularity and train our model using decoupled object- and part-based tasks to facilitate knowledge sharing and transfer among different tasks. To the best of our knowledge, this work is the first attempt to jointly train a model on SA-1B, instance-level, and part-level segmentation datasets. Experimental results and visualizations demonstrate that our model successfully achieves the desired goals. Furthermore, we show that multi-task training using the segmentation task defined on SA-1B and other segmentation tasks (e.g., panoptic and part segmentation) leads to performance gains on all segmentation tasks. In particular, we achieve a new state-of-the-art in COCO panoptic segmentation 60.2 PQ by adding SAM data.

F. Li and H. Zhang—Core Contributor.

C. Li and J. Yang—Project Lead.

L. Zhang and J. Gao—Equal Advisory Contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2010)

    Article  Google Scholar 

  2. Arbeláez, P., Pont-Tuset, J., Barron, J.T., Marques, F., Malik, J.: Multiscale combinatorial grouping. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 328–335 (2014)

    Google Scholar 

  3. Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: Yolact: real-time instance segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9157–9166 (2019)

    Google Scholar 

  4. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-End object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  5. Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9650–9660 (2021)

    Google Scholar 

  6. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  7. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  8. Chen, X., et al.: Microsoft COCO captions: data collection and evaluation server. arXiv preprint arXiv:1504.00325 (2015)

  9. Chen, X., Mottaghi, R., Liu, X., Fidler, S., Urtasun, R., Yuille, A.: Detect what you can: detecting and representing objects using holistic models and body parts (2014)

    Google Scholar 

  10. Chen, X., Zhao, Z., Zhang, Y., Duan, M., Qi, D., Zhao, H.: Focalclick: towards practical interactive image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1300–1309 (2022)

    Google Scholar 

  11. Cheng, B., Misra, I., Schwing, A. G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1290–1299 (2022)

    Google Scholar 

  12. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  13. de Geus, D., Meletis, P., Lu, C., Wen, X., Dubbelman, G.: Part-aware panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5485–5494 (2021)

    Google Scholar 

  14. Ding, Z., Wang, J., Tu, Z.: Open-vocabulary panoptic segmentation with maskclip. arXiv preprint arXiv:2208.08984 (2022)

  15. Everingham, M., Winn, J.: The pascal visual object classes challenge 2012 (voc2012) development kit. In: Pattern Analysis, Statistical Modelling and Computational Learning, Technical Report, vol. 8, no. 5 (2011)

    Google Scholar 

  16. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2009)

    Article  Google Scholar 

  17. King-Sun, F., Mui, J.K.: A survey on image segmentation. Pattern Recogn. 13(1), 3–16 (1981)

    Article  MathSciNet  Google Scholar 

  18. Ghiasi, G., Gu, X., Cui, Y., Lin, T.Y.: Open-vocabulary image segmentation. arXiv preprint arXiv:2112.12143 (2021)

  19. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  20. Grundmann, M., Kwatra, V., Han, M., Essa, I.: Efficient hierarchical graph-based video segmentation. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2141–2148. IEEE (2010)

    Google Scholar 

  21. Gupta, A., Dollar, P., Girshick, R.: Lvis: a dataset for large vocabulary instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5356–5364 (2019)

    Google Scholar 

  22. Guzman-Rivera, A., Batra, D., Kohli, P.: Multiple choice learning: learning to produce multiple structured outputs. Adv. Neural Inf. Process. Syst. 25 (2012)

    Google Scholar 

  23. He, J., et al.: Partimagenet: a large, high-quality dataset of parts. arXiv preprint arXiv:2112.00933 (2021)

  24. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  25. Jagadeesh, S.K., Schuster, R., Stricker, D.: Multi-task fusion for efficient panoptic-part segmentation. arXiv preprint arXiv:2212.07671 (2022)

  26. Jain, J., Li, J., Chiu, M.T., Hassani, A., Orlov, N., Shi, H.: Oneformer: one transformer to rule universal image segmentation. arXiv preprint arXiv:2211.06220 (2022)

  27. Ji, R., et al.: Learning semantic neural tree for human parsing. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 205–221. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_13

    Chapter  Google Scholar 

  28. Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision, In: ICML (2021)

    Google Scholar 

  29. Jia, M., et al.: Fashionpedia: ontology, segmentation, and an attribute localization dataset. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 316–332. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_19

    Chapter  Google Scholar 

  30. Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9404–9413 (2019)

    Google Scholar 

  31. Kirillov, A., et al.: Segment anything (2023)

    Google Scholar 

  32. Li, B., Weinberger, K.Q., Belongie, S., Koltun, V., Ranftl, R.: Language-driven semantic segmentation. arXiv preprint arXiv:2201.03546 (2022)

  33. Li, F., et al.: Mask dino: towards a unified transformer-based framework for object detection and segmentation. arXiv preprint arXiv:2206.02777 (2022)

  34. Li, Q., Arnab, A., Torr, P.H.S.: Holistic, instance-level human parsing. arXiv preprint arXiv:1709.03612 (2017)

  35. Li, X., Xu, S., Yang, Y., Cheng, G., Tong, Y., Tao, D.: Panoptic-partformer: learning a unified model for panoptic part segmentation. In: European Conference on Computer Vision, pp. 729–747. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19812-0_42

  36. Li, Y., Sun, J., Tang, C.-K., Shum, H.-Y.: Lazy snapping. ACM Trans. Graph. (ToG) 23(3), 303–308 (2004)

    Article  Google Scholar 

  37. Li, Z., Chen, Q., Koltun, V.: Interactive image segmentation with latent diversity. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 577–585 (2018)

    Google Scholar 

  38. Li, Z., et al.: Panoptic segformer: delving deeper into panoptic segmentation with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1280–1289 (2022)

    Google Scholar 

  39. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  40. Liu, Q., Xu, Z., Bertasius, G., Niethammer, M.: Simpleclick: interactive image segmentation with simple vision transformers. arXiv preprint arXiv:2210.11006 (2022)

  41. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  42. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  43. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  44. Meletis, P., Wen, X., Lu, C., de Geus, D., Dubbelman, G.: Cityscapes-panoptic-parts and pascal-panoptic-parts datasets for scene understanding. arXiv preprint arXiv:2004.07944 (2020)

  45. Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D.: Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3523–3542 (2021)

    Google Scholar 

  46. OpenAI. Chatgpt (2022). https://openai.com/blog/chatgpt

  47. OpenAI. Gpt-4 technical report (2023)

    Google Scholar 

  48. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  49. Ramanathan, V., et al.: PACO: parts and attributes of common objects. In arXiv preprint arXiv:2301.01795 (2023)

  50. Rao, Y., et al.: Denseclip: language-guided dense prediction with context-aware prompting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18082–18091 (2022)

    Google Scholar 

  51. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28, 91–99 (2015)

    Google Scholar 

  52. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)

    Google Scholar 

  53. Shao, S., et al.: Objects365: a large-scale, high-quality dataset for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8430–8439 (2019)

    Google Scholar 

  54. Song, X., et al.: Apollocar3d: a large 3d car instance understanding benchmark for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5452–5462 (2019)

    Google Scholar 

  55. Sun, P., et al.: Going denser with open-vocabulary part segmentation (2023)

    Google Scholar 

  56. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  57. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd birds-200-2011 dataset. Technical Report (2011)

    Google Scholar 

  58. Wang, X., Zhang, X., Cao, Y., Wang, W., Shen, C., Huang, T.: Seggpt: segmenting everything in context. arXiv preprint arXiv:2304.03284 (2023)

  59. Xu, J., et al.: Groupvit: semantic segmentation emerges from text supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18134–18144 (2022)

    Google Scholar 

  60. Xu, J., Liu, S., Vahdat, A., Byeon, W., Wang, X., De Mello, S.: Open-vocabulary panoptic segmentation with text-to-image diffusion models. arXiv preprint arXiv:2303.04803 (2023)

  61. Xu, N., Price, B., Cohen, S., Yang, J., Huang, T.S.: Deep interactive object selection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 373–381 (2016)

    Google Scholar 

  62. Yang, J., et al.: Unified contrastive learning in image-text-label space. In: CVPR (2022)

    Google Scholar 

  63. Yang, L., Song, Q., Wang, Z., Jiang, M.: Parsing r-cnn for instance-level human analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 364–373 (2019)

    Google Scholar 

  64. Zhang, H., et al.: Mp-former: mask-piloted transformer for image segmentation. arXiv preprint arXiv:2303.07336 (2023)

  65. Zhang, H., et al.: A simple framework for open-vocabulary segmentation and detection. arXiv preprint arXiv:2303.08131 (2023)

  66. Zhang, L., Agrawala, M.: Adding conditional control to text-to-image diffusion models. arXiv preprint arXiv:2302.05543 (2023)

  67. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ade20k dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 633–641 (2017)

    Google Scholar 

  68. Zhou, B., et al.: Semantic understanding of scenes through the ade20k dataset (2018)

    Google Scholar 

  69. Zou, X., et al.: Generalized decoding for pixel, image, and language. arXiv preprint arXiv:2212.11270 (2022)

  70. Zou, X., et al.: Segment everything everywhere all at once. arXiv preprint arXiv:2304.06718 (2023)

  71. Zou, Z., Shi, Z., Guo, Y., Ye, J.: Object detection in 20 years: a survey. arXiv preprint arXiv:1905.05055 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, F. et al. (2025). Segment and Recognize Anything at Any Granularity. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15106. Springer, Cham. https://doi.org/10.1007/978-3-031-73195-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73195-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73194-5

  • Online ISBN: 978-3-031-73195-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics