Abstract
In this work, we introduce Semantic-SAM, an augmented image segmentation foundation for segmenting and recognizing anything at desired granularities. Compared to the foundational segmentation model SAM [31], our model has two unique advantages: (i) granularity-controllability in that the model can produce segmentation masks at any desired granularities, from objects to parts to both; (ii) semantic-awareness in that the model simultaneously predicts semantic labels for masks at different granularities. To enable multi-granularity capabilities, we propose a multi-choice learning scheme, where each click point generates a set of masks at multiple levels of granularity, corresponding to a set of ground-truth masks. To achieve semantic awareness, we consolidate multiple datasets of different levels of granularity and train our model using decoupled object- and part-based tasks to facilitate knowledge sharing and transfer among different tasks. To the best of our knowledge, this work is the first attempt to jointly train a model on SA-1B, instance-level, and part-level segmentation datasets. Experimental results and visualizations demonstrate that our model successfully achieves the desired goals. Furthermore, we show that multi-task training using the segmentation task defined on SA-1B and other segmentation tasks (e.g., panoptic and part segmentation) leads to performance gains on all segmentation tasks. In particular, we achieve a new state-of-the-art in COCO panoptic segmentation 60.2 PQ by adding SAM data.
F. Li and H. Zhang—Core Contributor.
C. Li and J. Yang—Project Lead.
L. Zhang and J. Gao—Equal Advisory Contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2010)
Arbeláez, P., Pont-Tuset, J., Barron, J.T., Marques, F., Malik, J.: Multiscale combinatorial grouping. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 328–335 (2014)
Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: Yolact: real-time instance segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9157–9166 (2019)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-End object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9650–9660 (2021)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)
Chen, X., et al.: Microsoft COCO captions: data collection and evaluation server. arXiv preprint arXiv:1504.00325 (2015)
Chen, X., Mottaghi, R., Liu, X., Fidler, S., Urtasun, R., Yuille, A.: Detect what you can: detecting and representing objects using holistic models and body parts (2014)
Chen, X., Zhao, Z., Zhang, Y., Duan, M., Qi, D., Zhao, H.: Focalclick: towards practical interactive image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1300–1309 (2022)
Cheng, B., Misra, I., Schwing, A. G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1290–1299 (2022)
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)
de Geus, D., Meletis, P., Lu, C., Wen, X., Dubbelman, G.: Part-aware panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5485–5494 (2021)
Ding, Z., Wang, J., Tu, Z.: Open-vocabulary panoptic segmentation with maskclip. arXiv preprint arXiv:2208.08984 (2022)
Everingham, M., Winn, J.: The pascal visual object classes challenge 2012 (voc2012) development kit. In: Pattern Analysis, Statistical Modelling and Computational Learning, Technical Report, vol. 8, no. 5 (2011)
Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2009)
King-Sun, F., Mui, J.K.: A survey on image segmentation. Pattern Recogn. 13(1), 3–16 (1981)
Ghiasi, G., Gu, X., Cui, Y., Lin, T.Y.: Open-vocabulary image segmentation. arXiv preprint arXiv:2112.12143 (2021)
Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)
Grundmann, M., Kwatra, V., Han, M., Essa, I.: Efficient hierarchical graph-based video segmentation. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2141–2148. IEEE (2010)
Gupta, A., Dollar, P., Girshick, R.: Lvis: a dataset for large vocabulary instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5356–5364 (2019)
Guzman-Rivera, A., Batra, D., Kohli, P.: Multiple choice learning: learning to produce multiple structured outputs. Adv. Neural Inf. Process. Syst. 25 (2012)
He, J., et al.: Partimagenet: a large, high-quality dataset of parts. arXiv preprint arXiv:2112.00933 (2021)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
Jagadeesh, S.K., Schuster, R., Stricker, D.: Multi-task fusion for efficient panoptic-part segmentation. arXiv preprint arXiv:2212.07671 (2022)
Jain, J., Li, J., Chiu, M.T., Hassani, A., Orlov, N., Shi, H.: Oneformer: one transformer to rule universal image segmentation. arXiv preprint arXiv:2211.06220 (2022)
Ji, R., et al.: Learning semantic neural tree for human parsing. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 205–221. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_13
Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision, In: ICML (2021)
Jia, M., et al.: Fashionpedia: ontology, segmentation, and an attribute localization dataset. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 316–332. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_19
Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9404–9413 (2019)
Kirillov, A., et al.: Segment anything (2023)
Li, B., Weinberger, K.Q., Belongie, S., Koltun, V., Ranftl, R.: Language-driven semantic segmentation. arXiv preprint arXiv:2201.03546 (2022)
Li, F., et al.: Mask dino: towards a unified transformer-based framework for object detection and segmentation. arXiv preprint arXiv:2206.02777 (2022)
Li, Q., Arnab, A., Torr, P.H.S.: Holistic, instance-level human parsing. arXiv preprint arXiv:1709.03612 (2017)
Li, X., Xu, S., Yang, Y., Cheng, G., Tong, Y., Tao, D.: Panoptic-partformer: learning a unified model for panoptic part segmentation. In: European Conference on Computer Vision, pp. 729–747. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19812-0_42
Li, Y., Sun, J., Tang, C.-K., Shum, H.-Y.: Lazy snapping. ACM Trans. Graph. (ToG) 23(3), 303–308 (2004)
Li, Z., Chen, Q., Koltun, V.: Interactive image segmentation with latent diversity. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 577–585 (2018)
Li, Z., et al.: Panoptic segformer: delving deeper into panoptic segmentation with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1280–1289 (2022)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, Q., Xu, Z., Bertasius, G., Niethammer, M.: Simpleclick: interactive image segmentation with simple vision transformers. arXiv preprint arXiv:2210.11006 (2022)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)
Meletis, P., Wen, X., Lu, C., de Geus, D., Dubbelman, G.: Cityscapes-panoptic-parts and pascal-panoptic-parts datasets for scene understanding. arXiv preprint arXiv:2004.07944 (2020)
Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D.: Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3523–3542 (2021)
OpenAI. Chatgpt (2022). https://openai.com/blog/chatgpt
OpenAI. Gpt-4 technical report (2023)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)
Ramanathan, V., et al.: PACO: parts and attributes of common objects. In arXiv preprint arXiv:2301.01795 (2023)
Rao, Y., et al.: Denseclip: language-guided dense prediction with context-aware prompting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18082–18091 (2022)
Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28, 91–99 (2015)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)
Shao, S., et al.: Objects365: a large-scale, high-quality dataset for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8430–8439 (2019)
Song, X., et al.: Apollocar3d: a large 3d car instance understanding benchmark for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5452–5462 (2019)
Sun, P., et al.: Going denser with open-vocabulary part segmentation (2023)
Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)
Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd birds-200-2011 dataset. Technical Report (2011)
Wang, X., Zhang, X., Cao, Y., Wang, W., Shen, C., Huang, T.: Seggpt: segmenting everything in context. arXiv preprint arXiv:2304.03284 (2023)
Xu, J., et al.: Groupvit: semantic segmentation emerges from text supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18134–18144 (2022)
Xu, J., Liu, S., Vahdat, A., Byeon, W., Wang, X., De Mello, S.: Open-vocabulary panoptic segmentation with text-to-image diffusion models. arXiv preprint arXiv:2303.04803 (2023)
Xu, N., Price, B., Cohen, S., Yang, J., Huang, T.S.: Deep interactive object selection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 373–381 (2016)
Yang, J., et al.: Unified contrastive learning in image-text-label space. In: CVPR (2022)
Yang, L., Song, Q., Wang, Z., Jiang, M.: Parsing r-cnn for instance-level human analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 364–373 (2019)
Zhang, H., et al.: Mp-former: mask-piloted transformer for image segmentation. arXiv preprint arXiv:2303.07336 (2023)
Zhang, H., et al.: A simple framework for open-vocabulary segmentation and detection. arXiv preprint arXiv:2303.08131 (2023)
Zhang, L., Agrawala, M.: Adding conditional control to text-to-image diffusion models. arXiv preprint arXiv:2302.05543 (2023)
Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ade20k dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 633–641 (2017)
Zhou, B., et al.: Semantic understanding of scenes through the ade20k dataset (2018)
Zou, X., et al.: Generalized decoding for pixel, image, and language. arXiv preprint arXiv:2212.11270 (2022)
Zou, X., et al.: Segment everything everywhere all at once. arXiv preprint arXiv:2304.06718 (2023)
Zou, Z., Shi, Z., Guo, Y., Ye, J.: Object detection in 20 years: a survey. arXiv preprint arXiv:1905.05055 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, F. et al. (2025). Segment and Recognize Anything at Any Granularity. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15106. Springer, Cham. https://doi.org/10.1007/978-3-031-73195-2_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-73195-2_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73194-5
Online ISBN: 978-3-031-73195-2
eBook Packages: Computer ScienceComputer Science (R0)