Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

DeTra: A Unified Model for Object Detection and Trajectory Forecasting

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15146))

Included in the following conference series:

  • 252 Accesses

Abstract

The tasks of object detection and trajectory forecasting play a crucial role in understanding the scene for autonomous driving. These tasks are typically executed in a cascading manner, making them prone to compounding errors. Furthermore, there is usually a very thin interface between the two tasks, creating a lossy information bottleneck. To address these challenges, our approach formulates the union of the two tasks as a trajectory refinement problem, where the first pose is the detection (current time), and the subsequent poses are the waypoints of the multiple forecasts (future time). To tackle this unified task, we design a refinement transformer that infers the presence, pose, and multi-modal future behaviors of objects directly from LiDAR point clouds and high-definition maps. We call this model DeTra, short for object Detection and Trajectory forecasting. In our experiments, we observe that DeTra outperforms the state-of-the-art on Argoverse 2 Sensor and Waymo Open Dataset by a large margin, across a broad range of metrics. Finally, we perform extensive ablation studies that show the value of refinement for this task and that key design choices were made.

S. Casas, B. Agro and J. Mao—Equal contribution.

J. Mao and A. Cui—Work done while at Waabi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agro, B., Sykora, Q., Casas, S., Urtasun, R.: Implicit occupancy flow fields for perception and prediction in self-driving. In: CVPR (2023)

    Google Scholar 

  2. Cai, Z., Vasconcelos, N.: Cascade r-cnn: high quality object detection and instance segmentation. PAMI (2019)

    Google Scholar 

  3. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: ECCV (2020)

    Google Scholar 

  4. Casas, S., Gulino, C., Liao, R., Urtasun, R.: Spagnn: spatially-aware graph neural networks for relational behavior forecasting from sensor data. In: ICRA (2020)

    Google Scholar 

  5. Casas, S., Gulino, C., Suo, S., Luo, K., Liao, R., Urtasun, R.: Implicit latent variable model for scene-consistent motion forecasting. In: ECCV (2020)

    Google Scholar 

  6. Casas, S., Luo, W., Urtasun, R.: Intentnet: learning to predict intention from raw sensor data. In: CoRL (2018)

    Google Scholar 

  7. Casas, S., Sadat, A., Urtasun, R.: Mp3: a unified model to map, perceive, predict and plan. In: CVPR (2021)

    Google Scholar 

  8. Chai, Y., Sapp, B., Bansal, M., Anguelov, D.: Multipath: multiple probabilistic anchor trajectory hypotheses for behavior prediction. arXiv preprint arXiv:1910.05449 (2019)

  9. Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., Liu, Z.: Dynamic convolution: attention over convolution kernels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11030–11039 (2020)

    Google Scholar 

  10. Chitta, K., Prakash, A., Jaeger, B., Yu, Z., Renz, K., Geiger, A.: Transfuser: Imitation with transformer-based sensor fusion for autonomous driving. PAMI (2022)

    Google Scholar 

  11. Cho, K., et al.: Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  12. Cui, A., Casas, S., Sadat, A., Liao, R., Urtasun, R.: Lookout: diverse multi-future prediction and planning for self-driving. In: ICCV (2021)

    Google Scholar 

  13. Cui, A., Casas, S., Wong, K., Suo, S., Urtasun, R.: Gorela: go relative for viewpoint-invariant motion forecasting. arXiv preprint arXiv:2211.02545 (2022)

  14. Cui, H., et al.: Multimodal trajectory predictions for autonomous driving using deep convolutional networks. 2019 ICRA, pp. 2090–2096 (2018). https://api.semanticscholar.org/CorpusID:52891221

  15. Deo, N., Wolff, E.M., Beijbom, O.: Multimodal trajectory prediction conditioned on lane-graph traversals. In: CoRL (2021)

    Google Scholar 

  16. Djuric, N., et al.: Multixnet: multiclass multistage multimodal motion prediction. IV (2021)

    Google Scholar 

  17. Ettinger, S., et al.: Large scale interactive motion forecasting for autonomous driving: The waymo open motion dataset. In: ICCV (2021)

    Google Scholar 

  18. Fan, H., et al.: Baidu apollo em motion planner. arXiv preprint arXiv:1807.08048 (2018)

  19. Gao, J., et al.: Vectornet: encoding hd maps and agent dynamics from vectorized representation. CVPR (2020)

    Google Scholar 

  20. Gilles, T., Sabatini, S., Tsishkou, D., Stanciulescu, B., Moutarde, F.: Thomas: trajectory heatmap output with learned multi-agent sampling. arXiv preprint arXiv:2110.06607 (2021)

  21. Girgis, R., et al.: Latent variable sequential set transformers for joint multi-agent motion prediction. arXiv preprint arXiv:2104.00563 (2021)

  22. Grubb, A., Bagnell, D.: Speedboost: Anytime prediction with uniform near-optimality. In: Artificial Intelligence and Statistics, pp. 458–466. PMLR (2012)

    Google Scholar 

  23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  24. Hu, H., Dey, D., Hebert, M., Bagnell, J.A.: Learning anytime predictions in neural networks via adaptive loss balancing. In: Proceedings of the AAAI Conference on Artificial Intelligence (2019)

    Google Scholar 

  25. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  26. Hu, Y., et al.: Planning-oriented autonomous driving. In: CVPR (2023)

    Google Scholar 

  27. Ivanovic, B., Lin, Y., Shrivastava, S., Chakravarty, P., Pavone, M.: Propagating state uncertainty through trajectory forecasting. In: ICRA (2022)

    Google Scholar 

  28. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  29. Kumbhar, O., Sizikova, E., Majaj, N., Pelli, D.G.: Anytime prediction as a model of human reaction time. arXiv preprint arXiv:2011.12859 (2020)

  30. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars: Fast encoders for object detection from point clouds. CVPR (2018)

    Google Scholar 

  31. Li, L.L., et al.: End-to-end contextual perception and prediction with interaction transformer. IROS (2020)

    Google Scholar 

  32. Liang, M., et al.: Learning lane graph representations for motion forecasting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 541–556. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_32

    Chapter  Google Scholar 

  33. Liang, M., et al.: Pnpnet: end-to-end perception and prediction with tracking in the loop. In: CVPR (2020)

    Google Scholar 

  34. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV (2017)

    Google Scholar 

  35. Liu, S., et al.: DAB-DETR: Dynamic anchor boxes are better queries for DETR. In: ICLR (2022)

    Google Scholar 

  36. Liu, W., et al.: Ssd: single shot multibox detector. In: ECCV (2015)

    Google Scholar 

  37. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  38. Luo, W., Yang, B., Urtasun, R.: Fast and furious: real time end-to-end 3d detection, tracking and motion forecasting with a single convolutional net. In: CVPR (2018)

    Google Scholar 

  39. Mahjourian, R., Kim, J., Chai, Y., Tan, M., Sapp, B., Anguelov, D.: Occupancy flow fields for motion forecasting in autonomous driving. IEEE Robot. Autom. Lett. 7(2), 5639–5646 (2022)

    Article  Google Scholar 

  40. Meyer, G.P., et al.: Laserflow: efficient and probabilistic object detection and motion forecasting. IEEE Robot. Autom. Lett. 6, 526–533 (2021)

    Article  Google Scholar 

  41. Mo, X., Huang, Z., Xing, Y., Lv, C.: Multi-agent trajectory prediction with heterogeneous edge-enhanced graph attention network. IEEE Trans. Intell. Transp. Syst. (2022)

    Google Scholar 

  42. Nayakanti, N., Al-Rfou, R., Zhou, A., Goel, K., Refaat, K.S., Sapp, B.: Wayformer: Motion forecasting via simple & efficient attention networks. arXiv preprint arXiv:2207.05844 (2022)

  43. Ngiam, J., et al.: Scene transformer: A unified architecture for predicting multiple agent trajectories. arXiv preprint arXiv:2106.08417 (2021)

  44. Phan-Minh, T., Grigore, E.C., Boulton, F.A., Beijbom, O., Wolff, E.M.: Covernet: Multimodal behavior prediction using trajectory sets. CVPR (2019)

    Google Scholar 

  45. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classification and segmentation. In: CVPR (2017)

    Google Scholar 

  46. Qi, C.R., et al.: Offboard 3d object detection from point cloud sequences. In: CVPR (2021)

    Google Scholar 

  47. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  48. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. PAMI (2015)

    Google Scholar 

  49. Rhinehart, N., McAllister, R., Levine, S.: Deep imitative models for flexible inference, planning, and control. arXiv preprint arXiv:1810.06544 (2018)

  50. Sadat, A., Ren, M., Pokrovsky, A., Lin, Y.C., Yumer, E., Urtasun, R.: Jointly learnable behavior and trajectory planning for self-driving vehicles. In: 2019 IROS, pp. 3949–3956. IEEE (2019)

    Google Scholar 

  51. Shah, M., et al.: Liranet: end-to-end trajectory prediction using spatio-temporal radar fusion. In: CoRL (2020)

    Google Scholar 

  52. Sun, P., et al.: Scalability in perception for autonomous driving: Waymo open dataset. In: CVPR (2020)

    Google Scholar 

  53. Varadarajan, B., et al.: Multipath++: Efficient information fusion and trajectory aggregation for behavior prediction. In: 2022 ICRA (2022)

    Google Scholar 

  54. Vaswani, A., et al.: Attention is all you need. NeurIPS (2017)

    Google Scholar 

  55. Weng, X., Ivanovic, B., Pavone, M.: Mtp: multi-hypothesis tracking and prediction for reduced error propagation. In: IV (2022)

    Google Scholar 

  56. Wilson, B., et al.: Argoverse 2: next generation datasets for self-driving perception and forecasting. arXiv preprint arXiv:2301.00493 (2023)

  57. Yang, A.J., et al.: Labelformer: object trajectory refinement for offboard perception from lidar point clouds. In: CoRL. PMLR (2023)

    Google Scholar 

  58. Yang, B., Bai, M., Liang, M., Zeng, W., Urtasun, R.: Auto4d: learning to label 4d objects from sequential point clouds. arXiv preprint arXiv:2101.06586 (2021)

  59. Yang, B., Luo, W., Urtasun, R.: Pixor: real-time 3d object detection from point clouds. In: CVPR (2018)

    Google Scholar 

  60. Yuan, Y., Weng, X., Ou, Y., Kitani, K.M.: Agentformer: agent-aware transformers for socio-temporal multi-agent forecasting. In: ICCV (2021)

    Google Scholar 

  61. Zeng, W., et al.: End-to-end interpretable neural motion planner. In: CVPR (2019)

    Google Scholar 

  62. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. ArXiv (2019)

    Google Scholar 

  63. Zhou, Y., et al.: End-to-end multi-view fusion for 3d object detection in lidar point clouds. ArXiv (2019)

    Google Scholar 

  64. Zhou, Y., Tuzel, O.: Voxelnet: end-to-end learning for point cloud based 3d object detection. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  65. Zhou, Z., Wang, J., Li, Y.H., Huang, Y.K.: Query-centric trajectory prediction. In: CVPR (2023)

    Google Scholar 

  66. Zhou, Z., Ye, L., Wang, J., Wu, K., Lu, K.: Hivt: hierarchical vector transformer for multi-agent motion prediction. In: CVPR (2022)

    Google Scholar 

  67. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Casas .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 11147 KB)

Supplementary material 2 (mp4 85745 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Casas, S. et al. (2025). DeTra: A Unified Model for Object Detection and Trajectory Forecasting. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15146. Springer, Cham. https://doi.org/10.1007/978-3-031-73223-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73223-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73222-5

  • Online ISBN: 978-3-031-73223-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics