Abstract
The consumption of a video requires a considerable amount of energy during the various stages of its life-cycle. With a billion hours of video consumed daily, this contributes significantly to the greenhouse gas (GHG) emission. Therefore, reducing the end-to-end carbon footprint of the video chain, while preserving the quality of experience at the user side, is of high importance. To contribute in an impactful manner, we propose 3R-INN, a single invertible network that does three tasks at once: given a high-resolution (HR) grainy image, it Rescales it to a lower resolution, Removes film grain and Reduces its power consumption when displayed. Providing such a minimum viable quality content contributes to reducing the energy consumption during encoding, transmission, decoding and display. 3R-INN also offers the possibility to restore either the hr grainy original image or a grain-free version, thanks to its invertibility and the disentanglement of the high frequency, and without transmitting auxiliary data. Experiments show that, 3R-INN enables significant energy savings for encoding (78%), decoding (77%) and rendering (5% to 20%), while outperforming state-of-the-art film grain removal and synthesis, energy-aware and downscaling methods on different test-sets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The additional dataset is proposed at www.interdigital.com/data_sets/filmgrainstyle740k-dataset.
References
Energy consumption household. https://www.energybot.com/blog/average-energy-consumption.html
Netflix subscribers. https://www.usnews.com/news/business/articles/2024-01-23/netflixs-subscriber-growth-surges-as-streaming-service-unwraps-best-ever-holiday-season-results
Vtm-19.0. https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/tags/VTM-19.0
Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 126–135 (2017)
Ameur, Z., Demarty, C.H., Le Meur, O., Ménard, D., François, E.: Style-based film grain analysis and synthesis. In: Proceedings of the 14th Conference on ACM Multimedia Systems, pp. 229–238 (2023)
Ameur, Z., Hamidouche, W., François, E., Radosavljević, M., Menard, D., Demarty, C.H.: Deep-based film grain removal and synthesis. IEEE Trans. Image Process. (2023)
Bonnineau, C., Hamidouche, W., Travers, J.F., Déforges, O.: Versatile video coding and super-resolution for efficient delivery of 8k video with 4k backward-compatibility. In: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2048–2052 (2020). https://doi.org/10.1109/ICASSP40776.2020.9054716
Boyce, J., Suehring, K., Li, X., Seregin, V.: JVET-J1010: JVET common test conditions and software reference configurations. In: 10th Meeting of the Joint Video Experts Team, pp. JVET–J1010 (2018)
Chen, Z., Liu, T., Huang, J.J., Zhao, W., Bi, X., Wang, M.: Invertible mosaic image hiding network for very large capacity image steganography. arXiv preprint arXiv:2309.08987 (2023)
Dai, J., Au, O.C., Pang, C., Yang, W., Zou, F.: Film grain noise removal and synthesis in video coding. In: 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 890–893. IEEE (2010)
Demarty, C.H., Blondé, L., Le Meur, O.: Display power modeling for energy consumption control. In: 2023 IEEE International Conference on Image Processing (ICIP). IEEE (2023)
Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real NVP. arXiv preprint arXiv:1605.08803 (2016)
Du, W., Chen, H., Zhang, Y., Yang, H.: Hierarchical disentangled representation for invertible image denoising and beyond. arXiv preprint arXiv:2301.13358 (2023)
Franzen, R.: Kodak lossless true color image suite. Source: http://r0k.us/graphics/kodak4(2), 9 (1999)
Gomila, C.: SEI message for film grain encoding. JVT document, May 2003
Herglotz, C., Brand, F., Regensky, A., Rievel, F., Kaup, A.: Processing energy modeling for neural network based image compression. In: 2023 IEEE International Conference on Image Processing (ICIP), pp. 2390–2394. IEEE (2023)
Herglotz, C., Kränzler, M., Schober, R., Kaup, A.: Sweet streams are made of this: the system engineer’s view on energy efficiency in video communications [feature]. IEEE Circuits Syst. Mag. 23(1), 57–77 (2023)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Hwang, I., Jeong, J., Choi, J., Choe, Y.: Enhanced film grain noise removal for high fidelity video coding. In: 2013 International Conference on Information Science and Cloud Computing Companion, pp. 668–674. IEEE (2013)
Kang, S.J.: Image-quality-based power control technique for organic light emitting diode displays. J. Display Technol. 11(1), 104–109 (2015)
Kang, S.J., Kim, Y.H.: Image integrity-based gray-level error control for low power liquid crystal displays. IEEE Trans. Consum. Electron. 55(4), 2401–2406 (2009). https://doi.org/10.1109/TCE.2009.5373816
Kim, H., Choi, M., Lim, B., Mu Lee, K.: Task-aware image downscaling. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 419–434. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_25
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kingma, D.P., Dhariwal, P.: Glow: generative flow with invertible 1 \(\times \) 1 convolutions. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
Le Meur, O., Demarty, C.H.: Invertible energy-aware images. IEEE Signal Process. Lett. (2023)
Le Meur, O., Demarty, C.H., Blondé, L.: Deep-learning-based energy aware images. In: 2023 IEEE International Conference on Image Processing (ICIP), pp. 590–594. IEEE (2023)
Liu, Y., et al.: Invertible denoising network: a light solution for real noise removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13365–13374 (2021)
Lu, S.P., Wang, R., Zhong, T., Rosin, P.L.: Large-capacity image steganography based on invertible neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10816–10825 (2021)
Malmodin, J.: The power consumption of mobile and fixed network data services-the case of streaming video and downloading large files. In: Electronics Goes Green, vol. 2020 (2020)
Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol. 2, pp. 416–423. IEEE (2001)
Newson, A., Delon, J., Galerne, B.: A stochastic film grain model for resolution-independent rendering. In: Computer Graphics Forum, vol. 36, pp. 684–699. Wiley Online Library (2017)
Norkin, A., Birkbeck, N.: Film grain synthesis for AV1 video codec. In: 2018 Data Compression Conference, pp. 3–12. IEEE (2018)
Nugroho, K.A., Ruan, S.J.: R-ACE network for OLED image power saving. In: 2022 IEEE 4th Global Conference on Life Sciences and Technologies (LifeTech), pp. 284–285. IEEE (2022)
Radosavljevic, M., François, E., Reinhard, E., Hamidouche, W., Amestoy, T.: Implementation of film-grain technology within VVC. In: Applications of Digital Image Processing XLIV, vol. 11842, pp. 85–95. SPIE (2021)
Reddi, S.J., Kale, S., Kumar, S.: On the convergence of Adam and beyond. arXiv preprint arXiv:1904.09237 (2019)
Reinhard, E., Demarty, C.H., Blondé, L.: Pixel value adjustment to reduce the energy requirements of display devices. SMPTE Motion Imaging J. 132(7), 10–19 (2023)
Robinson, D.: Greening of streaming: the less accord: low energy sustainable streaming. In: Proceedings of the 2nd Mile-High Video Conference (MHV 2023), p. 115 (2023)
Shin, Y.G., Park, S., Yoo, M.J., Ko, S.J.: Unsupervised deep power saving and contrast enhancement for OLED displays. arXiv preprint arXiv:1905.05916 (2019)
Stoyan, D., Kendall, W.S., Chiu, S.N., Mecke, J.: Stochastic Geometry and Its Applications. Wiley, New York (2013)
Sun, W., Chen, Z.: Learned image downscaling for upscaling using content adaptive resampler. IEEE Trans. Image Process. 29, 4027–4040 (2020)
Trust, T.C.: Carbon impact of video streaming (2021). https://www.carbontrust.com/en-eu/node/1537
Xiao, M., et al.: Invertible image rescaling. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020, Proceedings, Part I 16, pp. 126–144. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_8
Yin, J.L., Chen, B.H., Peng, Y.T., Tsai, C.C.: Deep battery saver: end-to-end learning for power constrained contrast enhancement. IEEE Trans. Multimedia 23, 1049–1059 (2020)
Zhao, R., Liu, T., Xiao, J., Lun, D.P., Lam, K.M.: Invertible image decolorization. IEEE Trans. Image Process. 30, 6081–6095 (2021)
Zhu, F., Chen, G., Hao, J., Heng, P.A.: Blind image denoising via dependent Dirichlet process tree. IEEE Trans. Pattern Anal. Mach. Intell. 39(8), 1518–1531 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ameur, Z., Demarty, CH., Ménard, D., Meur, O.L. (2025). 3R-INN: How to Be Climate Friendly While Consuming/Delivering Videos?. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15133. Springer, Cham. https://doi.org/10.1007/978-3-031-73226-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-73226-3_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73225-6
Online ISBN: 978-3-031-73226-3
eBook Packages: Computer ScienceComputer Science (R0)