Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Pathology-Knowledge Enhanced Multi-instance Prompt Learning for Few-Shot Whole Slide Image Classification

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Current multi-instance learning algorithms for pathology image analysis often require a substantial number of Whole Slide Images for effective training but exhibit suboptimal performance in scenarios with limited learning data. In clinical settings, restricted access to pathology slides is inevitable due to patient privacy concerns and the prevalence of rare or emerging diseases. The emergence of the Few-shot Weakly Supervised WSI Classification accommodates the significant challenge of the limited slide data and sparse slide-level labels for diagnosis. Prompt learning based on the pre-trained models (e.g., CLIP) appears to be a promising scheme for this setting; however, current research in this area is limited, and existing algorithms often focus solely on patch-level prompts or confine themselves to language prompts. This paper proposes a multi-instance prompt learning framework enhanced with pathology knowledge, i.e., integrating visual and textual prior knowledge into prompts at both patch and slide levels. The training process employs a combination of static and learnable prompts, effectively guiding the activation of pre-trained models and further facilitating the diagnosis of key pathology patterns. Lightweight Messenger (self-attention) and Summary (attention-pooling) layers are introduced to model relationships between patches and slides within the same patient data. Additionally, alignment-wise contrastive losses ensure the feature-level alignment between visual and textual learnable prompts for both patches and slides. Our method demonstrates superior performance in three challenging clinical tasks, significantly outperforming comparative few-shot methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alayrac, J.B., et al.: Flamingo: a visual language model for few-shot learning. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 35, pp. 23716–23736 (2022)

    Google Scholar 

  2. Campanella, G., et al.: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25(8), 1301–1309 (2019)

    Article  Google Scholar 

  3. Chan, T.H., Cendra, F.J., Ma, L., Yin, G., Yu, L.: Histopathology whole slide image analysis with heterogeneous graph representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15661–15670 (2023)

    Google Scholar 

  4. Chen, R.J., et al.: Scaling vision transformers to gigapixel images via hierarchical self-supervised learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16144–16155 (2022)

    Google Scholar 

  5. Chen, R.J., et al.: Pathomic fusion: an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis. IEEE Trans. Med. Imaging 41(4), 757–770 (2020)

    Article  Google Scholar 

  6. Chen, R.J., et al.: Multimodal co-attention transformer for survival prediction in gigapixel whole slide images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4015–4025 (2021)

    Google Scholar 

  7. Chen, W., Si, C., Zhang, Z., Wang, L., Wang, Z., Tan, T.: Semantic prompt for few-shot image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 23581–23591 (2023)

    Google Scholar 

  8. Chen, Y.C., Lu, C.S.: Rankmix: data augmentation for weakly supervised learning of classifying whole slide images with diverse sizes and imbalanced categories. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 23936–23945 (2023)

    Google Scholar 

  9. Cheplygina, V., de Bruijne, M., Pluim, J.P.: Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. Med. Image Anal. 54, 280–296 (2019)

    Article  Google Scholar 

  10. Chikontwe, P., Kim, M., Nam, S.J., Go, H., Park, S.H.: Multiple instance learning with center embeddings for histopathology classification. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 519–528. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_50

    Chapter  Google Scholar 

  11. Gu, J., et al.: A systematic survey of prompt engineering on vision-language foundation models. arXiv preprint arXiv:2307.12980 (2023)

  12. Hashimoto, N., et al.: Multi-scale domain-adversarial multiple-instance CNN for cancer subtype classification with unannotated histopathological images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3852–3861 (2020)

    Google Scholar 

  13. Huang, Y., Zhao, W., Wang, S., Fu, Y., Jiang, Y., Yu, L.: Conslide: asynchronous hierarchical interaction transformer with breakup-reorganize rehearsal for continual whole slide image analysis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 21349–21360 (2023)

    Google Scholar 

  14. Huang, Z., Bianchi, F., Yuksekgonul, M., Montine, T.J., Zou, J.: A visual–language foundation model for pathology image analysis using medical twitter. Nat. Med. 1–10 (2023)

    Google Scholar 

  15. Ikezogwo, W., et al.: Quilt-1m: one million image-text pairs for histopathology. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 36 (2024)

    Google Scholar 

  16. Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning. In: International Conference on Machine Learning (ICML), pp. 2127–2136. PMLR (2018)

    Google Scholar 

  17. Jia, M., et al.: Visual prompt tuning. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13693, pp. 709–727. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19827-4_41

    Chapter  Google Scholar 

  18. Li, B., Li, Y., Eliceiri, K.W.: Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14318–14328 (2021)

    Google Scholar 

  19. Li, H., et al.: DT-MIL: deformable transformer for multi-instance learning on histopathological image. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 206–216. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_20

    Chapter  Google Scholar 

  20. Li, H., et al.: Task-specific fine-tuning via variational information bottleneck for weakly-supervised pathology whole slide image classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7454–7463 (2023)

    Google Scholar 

  21. Li, J., Li, D., Xiong, C., Hoi, S.: Blip: bootstrapping language-image pre-training for unified vision-language understanding and generation. In: International Conference on Machine Learning (ICML), pp. 12888–12900. PMLR (2022)

    Google Scholar 

  22. Lin, T., Xu, H., Yang, C., Xu, Y.: Interventional multi-instance learning with deconfounded instance-level prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), vol. 36, pp. 1601–1609 (2022)

    Google Scholar 

  23. Lin, T., Yu, Z., Hu, H., Xu, Y., Chen, C.W.: Interventional bag multi-instance learning on whole-slide pathological images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 19830–19839 (2023)

    Google Scholar 

  24. Lu, M.Y., et al.: Visual language pretrained multiple instance zero-shot transfer for histopathology images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 19764–19775 (2023)

    Google Scholar 

  25. Lu, M.Y., Williamson, D.F., Chen, T.Y., Chen, R.J., Barbieri, M., Mahmood, F.: Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 5(6), 555–570 (2021)

    Article  Google Scholar 

  26. Qu, L., Liu, S., Liu, X., Wang, M., Song, Z.: Towards label-efficient automatic diagnosis and analysis: a comprehensive survey of advanced deep learning-based weakly-supervised, semi-supervised and self-supervised techniques in histopathological image analysis. Phys. Med. Biol. (2022)

    Google Scholar 

  27. Qu, L., Luo, X., Fu, K., Wang, M., Song, Z.: The rise of AI language pathologists: exploring two-level prompt learning for few-shot weakly-supervised whole slide image classification. arXiv preprint arXiv:2305.17891 (2023)

  28. Qu, L., Luo, X., Liu, S., Wang, M., Song, Z.: DGMIL: distribution guided multiple instance learning for whole slide image classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13432, pp. 24–34. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16434-7_3

    Chapter  Google Scholar 

  29. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning (ICML), pp. 8748–8763. PMLR (2021)

    Google Scholar 

  30. Rony, J., Belharbi, S., Dolz, J., Ayed, I.B., McCaffrey, L., Granger, E.: Deep weakly-supervised learning methods for classification and localization in histology images: a survey. arXiv preprint arXiv:1909.03354 (2019)

  31. Shao, Z., et al.: Transmil: transformer based correlated multiple instance learning for whole slide image classification. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 34, pp. 2136–2147 (2021)

    Google Scholar 

  32. Shi, X., Xing, F., Xie, Y., Zhang, Z., Cui, L., Yang, L.: Loss-based attention for deep multiple instance learning. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), vol. 34, pp. 5742–5749 (2020)

    Google Scholar 

  33. Song, A.H., et al.: Artificial intelligence for digital and computational pathology. Nat. Rev. Bioeng. 1–20 (2023)

    Google Scholar 

  34. Tu, C., Zhang, Y., Ning, Z.: Dual-curriculum contrastive multi-instance learning for cancer prognosis analysis with whole slide images. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 35, pp. 29484–29497 (2022)

    Google Scholar 

  35. Wang, X., et al.: SCL-WC: cross-slide contrastive learning for weakly-supervised whole-slide image classification. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 35, pp. 18009–18021 (2022)

    Google Scholar 

  36. Wasim, S.T., Naseer, M., Khan, S., Khan, F.S., Shah, M.: Vita-clip: video and text adaptive clip via multimodal prompting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 23034–23044 (2023)

    Google Scholar 

  37. Xu, G., et al.: Camel: a weakly supervised learning framework for histopathology image segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10682–10691 (2019)

    Google Scholar 

  38. Yao, H., Zhang, R., Xu, C.: Visual-language prompt tuning with knowledge-guided context optimization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6757–6767 (2023)

    Google Scholar 

  39. Yao, J., Zhu, X., Jonnagaddala, J., Hawkins, N., Huang, J.: Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks. Med. Image Anal. 65, 101789 (2020)

    Article  Google Scholar 

  40. Zhang, H., et al.: DTFD-MIL: double-tier feature distillation multiple instance learning for histopathology whole slide image classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 18802–18812 (2022)

    Google Scholar 

  41. Zhang, Y., et al.: Text-guided foundation model adaptation for pathological image classification. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14224, pp. 272–282. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43904-9_27

    Chapter  Google Scholar 

  42. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Learning to prompt for vision-language models. Int. J. Comput. Vision 130(9), 2337–2348 (2022)

    Article  Google Scholar 

  43. Zhu, X., Yao, J., Zhu, F., Huang, J.: WSISA: making survival prediction from whole slide histopathological images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7234–7242 (2017)

    Google Scholar 

Download references

Acknowledgements

This work is funded by the National Key R&D Program of China (2022ZD0160700) and Shanghai AI Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosong Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 328 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qu, L. et al. (2025). Pathology-Knowledge Enhanced Multi-instance Prompt Learning for Few-Shot Whole Slide Image Classification. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15069. Springer, Cham. https://doi.org/10.1007/978-3-031-73247-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73247-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73246-1

  • Online ISBN: 978-3-031-73247-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics