Abstract
Current multi-instance learning algorithms for pathology image analysis often require a substantial number of Whole Slide Images for effective training but exhibit suboptimal performance in scenarios with limited learning data. In clinical settings, restricted access to pathology slides is inevitable due to patient privacy concerns and the prevalence of rare or emerging diseases. The emergence of the Few-shot Weakly Supervised WSI Classification accommodates the significant challenge of the limited slide data and sparse slide-level labels for diagnosis. Prompt learning based on the pre-trained models (e.g., CLIP) appears to be a promising scheme for this setting; however, current research in this area is limited, and existing algorithms often focus solely on patch-level prompts or confine themselves to language prompts. This paper proposes a multi-instance prompt learning framework enhanced with pathology knowledge, i.e., integrating visual and textual prior knowledge into prompts at both patch and slide levels. The training process employs a combination of static and learnable prompts, effectively guiding the activation of pre-trained models and further facilitating the diagnosis of key pathology patterns. Lightweight Messenger (self-attention) and Summary (attention-pooling) layers are introduced to model relationships between patches and slides within the same patient data. Additionally, alignment-wise contrastive losses ensure the feature-level alignment between visual and textual learnable prompts for both patches and slides. Our method demonstrates superior performance in three challenging clinical tasks, significantly outperforming comparative few-shot methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alayrac, J.B., et al.: Flamingo: a visual language model for few-shot learning. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 35, pp. 23716–23736 (2022)
Campanella, G., et al.: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25(8), 1301–1309 (2019)
Chan, T.H., Cendra, F.J., Ma, L., Yin, G., Yu, L.: Histopathology whole slide image analysis with heterogeneous graph representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15661–15670 (2023)
Chen, R.J., et al.: Scaling vision transformers to gigapixel images via hierarchical self-supervised learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16144–16155 (2022)
Chen, R.J., et al.: Pathomic fusion: an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis. IEEE Trans. Med. Imaging 41(4), 757–770 (2020)
Chen, R.J., et al.: Multimodal co-attention transformer for survival prediction in gigapixel whole slide images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4015–4025 (2021)
Chen, W., Si, C., Zhang, Z., Wang, L., Wang, Z., Tan, T.: Semantic prompt for few-shot image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 23581–23591 (2023)
Chen, Y.C., Lu, C.S.: Rankmix: data augmentation for weakly supervised learning of classifying whole slide images with diverse sizes and imbalanced categories. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 23936–23945 (2023)
Cheplygina, V., de Bruijne, M., Pluim, J.P.: Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. Med. Image Anal. 54, 280–296 (2019)
Chikontwe, P., Kim, M., Nam, S.J., Go, H., Park, S.H.: Multiple instance learning with center embeddings for histopathology classification. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 519–528. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_50
Gu, J., et al.: A systematic survey of prompt engineering on vision-language foundation models. arXiv preprint arXiv:2307.12980 (2023)
Hashimoto, N., et al.: Multi-scale domain-adversarial multiple-instance CNN for cancer subtype classification with unannotated histopathological images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3852–3861 (2020)
Huang, Y., Zhao, W., Wang, S., Fu, Y., Jiang, Y., Yu, L.: Conslide: asynchronous hierarchical interaction transformer with breakup-reorganize rehearsal for continual whole slide image analysis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 21349–21360 (2023)
Huang, Z., Bianchi, F., Yuksekgonul, M., Montine, T.J., Zou, J.: A visual–language foundation model for pathology image analysis using medical twitter. Nat. Med. 1–10 (2023)
Ikezogwo, W., et al.: Quilt-1m: one million image-text pairs for histopathology. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 36 (2024)
Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning. In: International Conference on Machine Learning (ICML), pp. 2127–2136. PMLR (2018)
Jia, M., et al.: Visual prompt tuning. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13693, pp. 709–727. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19827-4_41
Li, B., Li, Y., Eliceiri, K.W.: Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14318–14328 (2021)
Li, H., et al.: DT-MIL: deformable transformer for multi-instance learning on histopathological image. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 206–216. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_20
Li, H., et al.: Task-specific fine-tuning via variational information bottleneck for weakly-supervised pathology whole slide image classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7454–7463 (2023)
Li, J., Li, D., Xiong, C., Hoi, S.: Blip: bootstrapping language-image pre-training for unified vision-language understanding and generation. In: International Conference on Machine Learning (ICML), pp. 12888–12900. PMLR (2022)
Lin, T., Xu, H., Yang, C., Xu, Y.: Interventional multi-instance learning with deconfounded instance-level prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), vol. 36, pp. 1601–1609 (2022)
Lin, T., Yu, Z., Hu, H., Xu, Y., Chen, C.W.: Interventional bag multi-instance learning on whole-slide pathological images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 19830–19839 (2023)
Lu, M.Y., et al.: Visual language pretrained multiple instance zero-shot transfer for histopathology images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 19764–19775 (2023)
Lu, M.Y., Williamson, D.F., Chen, T.Y., Chen, R.J., Barbieri, M., Mahmood, F.: Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 5(6), 555–570 (2021)
Qu, L., Liu, S., Liu, X., Wang, M., Song, Z.: Towards label-efficient automatic diagnosis and analysis: a comprehensive survey of advanced deep learning-based weakly-supervised, semi-supervised and self-supervised techniques in histopathological image analysis. Phys. Med. Biol. (2022)
Qu, L., Luo, X., Fu, K., Wang, M., Song, Z.: The rise of AI language pathologists: exploring two-level prompt learning for few-shot weakly-supervised whole slide image classification. arXiv preprint arXiv:2305.17891 (2023)
Qu, L., Luo, X., Liu, S., Wang, M., Song, Z.: DGMIL: distribution guided multiple instance learning for whole slide image classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13432, pp. 24–34. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16434-7_3
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning (ICML), pp. 8748–8763. PMLR (2021)
Rony, J., Belharbi, S., Dolz, J., Ayed, I.B., McCaffrey, L., Granger, E.: Deep weakly-supervised learning methods for classification and localization in histology images: a survey. arXiv preprint arXiv:1909.03354 (2019)
Shao, Z., et al.: Transmil: transformer based correlated multiple instance learning for whole slide image classification. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 34, pp. 2136–2147 (2021)
Shi, X., Xing, F., Xie, Y., Zhang, Z., Cui, L., Yang, L.: Loss-based attention for deep multiple instance learning. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), vol. 34, pp. 5742–5749 (2020)
Song, A.H., et al.: Artificial intelligence for digital and computational pathology. Nat. Rev. Bioeng. 1–20 (2023)
Tu, C., Zhang, Y., Ning, Z.: Dual-curriculum contrastive multi-instance learning for cancer prognosis analysis with whole slide images. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 35, pp. 29484–29497 (2022)
Wang, X., et al.: SCL-WC: cross-slide contrastive learning for weakly-supervised whole-slide image classification. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 35, pp. 18009–18021 (2022)
Wasim, S.T., Naseer, M., Khan, S., Khan, F.S., Shah, M.: Vita-clip: video and text adaptive clip via multimodal prompting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 23034–23044 (2023)
Xu, G., et al.: Camel: a weakly supervised learning framework for histopathology image segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10682–10691 (2019)
Yao, H., Zhang, R., Xu, C.: Visual-language prompt tuning with knowledge-guided context optimization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6757–6767 (2023)
Yao, J., Zhu, X., Jonnagaddala, J., Hawkins, N., Huang, J.: Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks. Med. Image Anal. 65, 101789 (2020)
Zhang, H., et al.: DTFD-MIL: double-tier feature distillation multiple instance learning for histopathology whole slide image classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 18802–18812 (2022)
Zhang, Y., et al.: Text-guided foundation model adaptation for pathological image classification. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14224, pp. 272–282. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43904-9_27
Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Learning to prompt for vision-language models. Int. J. Comput. Vision 130(9), 2337–2348 (2022)
Zhu, X., Yao, J., Zhu, F., Huang, J.: WSISA: making survival prediction from whole slide histopathological images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7234–7242 (2017)
Acknowledgements
This work is funded by the National Key R&D Program of China (2022ZD0160700) and Shanghai AI Laboratory.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Qu, L. et al. (2025). Pathology-Knowledge Enhanced Multi-instance Prompt Learning for Few-Shot Whole Slide Image Classification. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15069. Springer, Cham. https://doi.org/10.1007/978-3-031-73247-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-73247-8_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73246-1
Online ISBN: 978-3-031-73247-8
eBook Packages: Computer ScienceComputer Science (R0)