Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Structure-Preserving Diffusion Model for Unpaired Medical Image Translation

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15241))

Included in the following conference series:

  • 189 Accesses

Abstract

Multi-modality imaging plays a crucial role in clinical diagnosis. Reconstructing missing modality images, such as CT-to-MR, is quite important when only one modality is available. Previous works either fall short in preserving the anatomical structures during translation or require paired data, leaving significant challenges unaddressed in the realm of unpaired medical image translation. This study introduces a novel structure-preserving diffusion model specifically designed for unpaired medical image translation, leveraging edge information to represent common anatomical structures across different modalities. To bridge the domain gap effectively, we further propose a novel Interleaved Sampling Refinement (ISR) mechanism that dynamically alternates the use of edge information. This approach not only generates high-quality images but also preserves structural integrity across modalities. Our experiments conducted on two public datasets have achieved the state-of-the-art performance, demonstrating the advantage of our method on unpaired medical image translation. The code of our implementation is available at GitHub.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  2. Fu, H., Gong, M., Wang, C., Batmanghelich, K., Zhang, K., Tao, D.: Geometry-consistent generative adversarial networks for one-sided unsupervised domain mapping. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2427–2436 (2019)

    Google Scholar 

  3. Yang, H., et al.: Unsupervised MR-to-CT synthesis using structure-constrained cycleGAN. IEEE Trans. Med. Imaging 39(12), 4249–4261 (2020)

    Google Scholar 

  4. Wolterink, J.M., Dinkla, A.M., Savenije, M.H.F., Seevinck, P.R., van den Berg, C.A.T., Išgum, I.: Deep MR to CT synthesis using unpaired data. In: Tsaftaris, S., Gooya, A., Frangi, A., Prince, J. (eds.) Simulation and Synthesis in Medical Imaging: Second International Workshop, SASHIMI 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, 10 September 2017, Proceedings 2, pp. 14–23. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68127-6_2

  5. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Generative adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65 (2018)

    Article  Google Scholar 

  6. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  7. Özbey, M., et al.: Unsupervised medical image translation with adversarial diffusion models. IEEE Trans. Med. Imaging (2023)

    Google Scholar 

  8. Li, Y., et al.: Zero-shot medical image translation via frequency-guided diffusion models. arXiv preprint arXiv:2304.02742 (2023)

  9. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015, Proceedings, Part III 18, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  10. Hong, S., Lee, G., Jang, W., Kim, S.: Improving sample quality of diffusion models using self-attention guidance. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7462–7471 (2023)

    Google Scholar 

  11. Ji, Y., et al.: AMOS: a large-scale abdominal multi-organ benchmark for versatile medical image segmentation. arXiv preprint arXiv:2206.08023 (2022)

  12. Nyholm, T., et al.: MR and CT data with multiobserver delineations of organs in the pelvic area-part of the gold atlas project. Med. Phys. 45(3), 1295–1300 (2018)

    Article  Google Scholar 

  13. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  14. Milletari, F., Navab, N., Ahmadi, S.-A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  15. Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 179–196. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_11

    Chapter  Google Scholar 

  16. Ge, Y., Xue, Z., Cao, T., Liao, S.: Unpaired whole-body MR to CT synthesis with correlation coefficient constrained adversarial learning. In: Medical Imaging 2019: Image Processing, vol. 10949, pp. 28–35. SPIE (2019)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by NSFC grants (No. 6230012077) and Shanghai Municipal Central Guided Local Science and Technology Development Fund Project (No: YDZX20233100001001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Cui .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 485 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H., Wang, X., Cui, Z. (2025). Structure-Preserving Diffusion Model for Unpaired Medical Image Translation. In: Xu, X., Cui, Z., Rekik, I., Ouyang, X., Sun, K. (eds) Machine Learning in Medical Imaging. MLMI 2024. Lecture Notes in Computer Science, vol 15241. Springer, Cham. https://doi.org/10.1007/978-3-031-73284-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73284-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73283-6

  • Online ISBN: 978-3-031-73284-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics