Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Selective Classifier Based Search Space Shrinking for Radiographs Retrieval

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2024)

Abstract

We propose an image retrieval system which reduces search space using the concept of selective classification. The proposed system can partially annotate a given medical radiology image, marking ambiguous parts as undefined. For illustration, a model was built using the publicly available IRMA dataset from ImageCLEF2009 medical annotation task, consisting of 14, 410 X-ray images. Mean average precision (MAP) and IRMA error score were used for model validation. The proposed model is compared with other state-of-the-art models reported in the literature. In a 193 class-code setup, it attains IRMA error score 101.36 and MAP 0.745, surpassing current state-of-the-art by 22.89 and 0.112, respectively. The results suggest that the proposed model is usable for fast and accurate retrieval of hierarchically labelled medical radiographs. Code required to recreate our experiments is available at https://github.com/AIlab-RITEH/radret/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn, E., Kumar, A., Kim, J., Li, C., Feng, D., Fulham, M.: X-ray image classification using domain transferred convolutional neural networks and local sparse spatial pyramid. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 855–858 (2016)

    Google Scholar 

  2. Bhattacharya, J., Bhatia, T., Pannu, H.S.: Improved search space shrinking for medical image retrieval using capsule architecture and decision fusion. Expert Syst. Appl. 171, 114543 (2021)

    Article  Google Scholar 

  3. Boriah, S., Chandola, V., Kumar, V.: Similarity Measures for Categorical Data: A Comparative Evaluation, vol. 30, pp. 243–254 (2008)

    Google Scholar 

  4. Buslaev, A., Iglovikov, V.I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin, A.A.: Albumentations: fast and flexible image augmentations. Information 11(2), 125 (2020)

    Google Scholar 

  5. Camlica, Z., Tizhoosh, H., Khalvati, F.: Medical Image Classification via SVM Using LBP Features from Saliency-Based Folded Data, pp. 128–132 (2015)

    Google Scholar 

  6. Chlap, P., Min, H., Vandenberg, N., Dowling, J., Holloway, L., Haworth, A.: A review of medical image data augmentation techniques for deep learning applications. J. Med. Imaging Radiat. Oncol. 65(5), 545–563 (2021)

    Article  Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  8. El-Yaniv, R., Wiener, Y.: On the foundations of noise-free selective classification. J. Mach. Learn. Res. 11, 1605–1641 (2010)

    MathSciNet  Google Scholar 

  9. Gao, L., Zhang, L., Liu, C., Wu, S.: Handling imbalanced medical image data: a deep-learning-based one-class classification approach. Artif. Intell. Med. 108, 101935 (2020)

    Article  Google Scholar 

  10. Geifman, Y., El-Yaniv, R.: Selective classification for deep neural networks. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017)

    Google Scholar 

  11. Geifman, Y., El-Yaniv, R.: SelectiveNet: a deep neural network with an integrated reject option. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 2151–2159. PMLR (2019)

    Google Scholar 

  12. Harrison, J.E., Weber, S., Jakob, R., Chute, C.G.: Icd-11: an international classification of diseases for the twenty-first century. BMC Med. Inform. Decis. Mak. 21, 1–10 (2021)

    Article  Google Scholar 

  13. Karthik, K., Kamath, S.S.: A deep neural network model for content-based medical image retrieval with multi-view classification. Vis. Comput. 37(7), 1837–1850 (2021)

    Article  Google Scholar 

  14. Khatami, A., Babaie, M., Khosravi, A., Tizhoosh, H., Nahavandi, S.: Parallel deep solutions for image retrieval from imbalanced medical imaging archives. Appl. Soft Comput. 63, 197–205 (2018)

    Article  Google Scholar 

  15. Khatami, A., Babaie, M., Tizhoosh, H., Khosravi, A., Nguyen, T., Nahavandi, S.: A sequential search-space shrinking using cnn transfer learning and a radon projection pool for medical image retrieval. Expert Syst. Appl. 100, 224–233 (2018)

    Article  Google Scholar 

  16. Lehmann, T.M., Schubert, H., Keysers, D., Kohnen, M., Wein, B.B.: The IRMA code for unique classification of medical images. In: Huang, H.K., Ratib, O.M. (eds.) Medical Imaging 2003: PACS and Integrated Medical Information Systems: Design and Evaluation, vol. 5033, pp. 440–451. International Society for Optics and Photonics, SPIE (2003)

    Chapter  Google Scholar 

  17. Li, Z., Kamnitsas, K., Glocker, B.: Analyzing overfitting under class imbalance in neural networks for image segmentation. IEEE Trans. Med. Imaging 40(3), 1065–1077 (2021)

    Article  Google Scholar 

  18. Li, Z., Zhang, X., Müller, H., Zhang, S.: Large-scale retrieval for medical image analytics: a comprehensive review. Med. Image Anal. 43, 66–84 (2018)

    Article  Google Scholar 

  19. Nkwentsha, X., Hounkanrin, A., Nicolls, F.: Automatic classification of medical x-ray images with convolutional neural networks. In: 2020 International SAUPEC/RobMech/PRASA Conference, pp. 1–4. IEEE (2020)

    Google Scholar 

  20. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996)

    Article  Google Scholar 

  21. Pang, S., Orgun, M.A., Yu, Z.: A novel biomedical image indexing and retrieval system via deep preference learning. Comput. Methods Programs Biomed. 158, 53–69 (2018)

    Article  Google Scholar 

  22. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.: Mobilenetv2: Inverted residuals and linear bottlenecks. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, 18–22 June 2018, pp. 4510–4520. Computer Vision Foundation/IEEE Computer Society (2018)

    Google Scholar 

  23. Shamna, P., Govindan, V., Abdul Nazeer, K.: Content-based medical image retrieval by spatial matching of visual words. J. King Saud Univ. Comput. Inf. Sci. 34(2), 58–71 (2022)

    Google Scholar 

  24. Simard, P., Steinkraus, D., Platt, J.: Best practices for convolutional neural networks applied to visual document analysis. In: Proceedings of the Seventh International Conference on Document Analysis and Recognition, 2003, pp. 958–963 (2003)

    Google Scholar 

  25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, 7–9 May 2015, Conference Track Proceedings (2015)

    Google Scholar 

  26. Singhal, K., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023)

    Google Scholar 

  27. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  28. Tang, Q., Liu, Y., Liu, H.: Medical image classification via multiscale representation learning. Artif. Intell. Med. 79, 71–78 (2017)

    Article  Google Scholar 

  29. Tang, Q., Yang, J., Xia, X.: Medical image retrieval using multi-texton assignment. J. Digit. Imaging 31(1), 107–116 (2018)

    Article  Google Scholar 

  30. Tommasi, T., Caputo, B., Welter, P., Güld, M.O., Deserno, T.M.: Overview of the CLEF 2009 medical image annotation track. In: Peters, C., et al. (eds.) CLEF 2009. LNCS, vol. 6242, pp. 85–93. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15751-6_9

Download references

Acknowledgments

This work has been supported in part by the Croatian Science Foundation [grant number IP-2020-02-3770]; and by the University of Rijeka, Croatia [grant number uniri-iskusni-tehnic-23-12].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Štajduhar .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5761 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manojlović, T., Ipšić, I., Štajduhar, I. (2025). Selective Classifier Based Search Space Shrinking for Radiographs Retrieval. In: Xu, X., Cui, Z., Rekik, I., Ouyang, X., Sun, K. (eds) Machine Learning in Medical Imaging. MLMI 2024. Lecture Notes in Computer Science, vol 15242. Springer, Cham. https://doi.org/10.1007/978-3-031-73290-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73290-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73292-8

  • Online ISBN: 978-3-031-73290-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics