Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

NL2Contact: Natural Language Guided 3D Hand-Object Contact Modeling with Diffusion Model

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15086))

Included in the following conference series:

  • 72 Accesses

Abstract

Modeling the physical contacts between the hand and object is standard for refining inaccurate hand poses and generating novel human grasp in 3D hand-object reconstruction. However, existing methods rely on geometric constraints that cannot be specified or controlled. This paper introduces a novel task of controllable 3D hand-object contact modeling with natural language descriptions. Challenges include i) the complexity of cross-modal modeling from language to contact, and ii) a lack of descriptive text for contact patterns. To address these issues, we propose NL2Contact, a model that generates controllable contacts by leveraging staged diffusion models. Given a language description of the hand and contact, NL2Contact generates realistic and faithful 3D hand-object contacts. To train the model, we build ContactDescribe, the first dataset with hand-centered contact descriptions. It contains multi-level and diverse descriptions generated by large language models based on carefully designed prompts (e.g., grasp action, grasp type, contact location, free finger status). We show applications of our model to grasp pose optimization and novel human grasp generation, both based on a textual contact description.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We slightly abuse the notion \(\theta \) to represent learning of model parameters.

References

  1. https://openai.com/blog/chatgpt/

  2. Ahn, H., Ha, T., Choi, Y., Yoo, H., Oh, S.: Text2action: generative adversarial synthesis from language to action. In: ICRA (2018)

    Google Scholar 

  3. Brahmbhatt, S., Ham, C., Kemp, C.C., Hays, J.: ContactDB: analyzing and predicting grasp contact via thermal imaging. In: CVPR (2019)

    Google Scholar 

  4. Brahmbhatt, S., Tang, C., Twigg, C.D., Kemp, C.C., Hays, J.: ContactPose: a dataset of grasps with object contact and hand pose. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 361–378. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_22

    Chapter  Google Scholar 

  5. Calli, B., Singh, A., Walsman, A., Srinivasa, S., Abbeel, P., Dollar, A.M.: The ycb object and model set: towards common benchmarks for manipulation research. In: ICAR (2015)

    Google Scholar 

  6. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: ECCV (2020)

    Google Scholar 

  7. Cheang, C., Lin, H., Fu, Y., Xue, X.: Learning 6-dof object poses to grasp category-level objects by language instructions. In: ICRA (2022)

    Google Scholar 

  8. Corona, E., Pumarola, A., Alenya, G., Moreno-Noguer, F., Rogez, G.: Ganhand: Predicting human grasp affordances in multi-object scenes. In: CVPR (2020)

    Google Scholar 

  9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  10. Grady, P., Tang, C., Twigg, C.D., Vo, M., Brahmbhatt, S., Kemp, C.C.: ContactOpt: Optimizing contact to improve grasps. In: CVPR (2021)

    Google Scholar 

  11. Guo, C., et al.: Generating diverse and natural 3d human motions from text. In: CVPR (2022)

    Google Scholar 

  12. Ha, H., Florence, P., Song, S.: Scaling up and distilling down: Language-guided robot skill acquisition. CoRL (2023)

    Google Scholar 

  13. Hampali, S., Rad, M., Oberweger, M., Lepetit, V.: Honnotate: a method for 3D annotation of hand and object poses. In: CVPR (2020)

    Google Scholar 

  14. Hasson, Y., Varol, G., Laptev, I., Schmid, C.: Towards unconstrained joint hand-object reconstruction from RGB videos. In: 3DV (2021)

    Google Scholar 

  15. Hasson, Y., Varol, G., Tzionas, D., Kalevatykh, I., Black, M.J., Laptev, I., Schmid, C.: Learning joint reconstruction of hands and manipulated objects. In: CVPR (2019)

    Google Scholar 

  16. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. NeurIPS (2020)

    Google Scholar 

  17. Jian, J., Liu, X., Li, M., Hu, R., Liu, J.: Affordpose: a large-scale dataset of hand-object interactions with affordance-driven hand pose. In: ICCV (2023)

    Google Scholar 

  18. Jiang, H., Liu, S., Wang, J., Wang, X.: Hand-object contact consistency reasoning for human grasps generation. In: ICCV (2021)

    Google Scholar 

  19. Karunratanakul, K., Preechakul, K., Suwajanakorn, S., Tang, S.: Guided motion diffusion for controllable human motion synthesis. In: ICCV (2023)

    Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  21. Kojima, T., Gu, S.S., Reid, M., Matsuo, Y., Iwasawa, Y.: Large language models are zero-shot reasoners. Adv. Neural. Inf. Process. Syst. 35, 22199–22213 (2022)

    Google Scholar 

  22. Kong, H., Gong, K., Lian, D., Mi, M.B., Wang, X.: Priority-centric human motion generation in discrete latent space. In: ICCV (2023)

    Google Scholar 

  23. Lakshmipathy, A.S., Feng, N., Lee, Y.X., Mahler, M., Pollard, N.: Contact edit: Artist tools for intuitive modeling of hand-object interactions. ACM Trans. Graph. (TOG) (2023)

    Google Scholar 

  24. Li, H., Lin, X., Zhou, Y., Li, X., Huo, Y., Chen, J., Ye, Q.: Contact2grasp: 3d grasp synthesis via hand-object contact constraint. IJCAI (2022)

    Google Scholar 

  25. Liu, N., Li, S., Du, Y., Torralba, A., Tenenbaum, J.B.: Compositional visual generation with composable diffusion models. In: ECCV (2022)

    Google Scholar 

  26. Liu, S., Jiang, H., Xu, J., Liu, S., Wang, X.: Semi-supervised 3D hand-object poses estimation with interactions in time. In: CVPR (2021)

    Google Scholar 

  27. Liu, S., Zhou, Y., Yang, J., Gupta, S., Wang, S.: Contactgen: Generative contact modeling for grasp generation. In: CVPR (2023)

    Google Scholar 

  28. Liu, Y., et al.: Hoi4d: a 4d egocentric dataset for category-level human-object interaction. In: CVPR (2022)

    Google Scholar 

  29. Pavlakos, G., et al.: Expressive body capture: 3d hands, face, and body from a single image. In: CVPR (2019)

    Google Scholar 

  30. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: CVPR (2017)

    Google Scholar 

  31. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: NeurIPS (2017)

    Google Scholar 

  32. Qin, Y., et al.: Dexmv: Imitation learning for dexterous manipulation from human videos. In: ECCV, pp. 570–587 (2022). https://doi.org/10.1007/978-3-031-19842-7_33

  33. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR (2022)

    Google Scholar 

  34. Romero, J., Tzionas, D., Black, M.J.: Embodied hands: modeling and capturing hands and bodies together. ACM Trans. Graph. (ToG) (2017)

    Google Scholar 

  35. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: MICCAI (2015)

    Google Scholar 

  36. Sener, F., et al.: Assembly101: a large-scale multi-view video dataset for understanding procedural activities. In: CVPR (2022)

    Google Scholar 

  37. Taheri, O., Ghorbani, N., Black, M.J., Tzionas, D.: GRAB: a dataset of whole-body human grasping of objects. In: ECCV (2020)

    Google Scholar 

  38. Tang, C., Huang, D., Ge, W., Liu, W., Zhang, H.: Graspgpt: Leveraging semantic knowledge from a large language model for task-oriented grasping. IEEE Robotics and Automation Letters (2023)

    Google Scholar 

  39. Tendulkar, P., Surís, D., Vondrick, C.: Flex: full-body grasping without full-body grasps. In: CVPR (2023)

    Google Scholar 

  40. Tse, T.H.E., Kim, K.I., Leonardis, A., Chang, H.J.: Collaborative learning for hand and object reconstruction with attention-guided graph convolution. In: CVPR (2022)

    Google Scholar 

  41. Tse, T.H.E., et al.: Spectral graphormer: spectral graph-based transformer for egocentric two-hand reconstruction using multi-view color images. In: ICCV (2023)

    Google Scholar 

  42. Tse, T.H.E., Zhang, Z., Kim, K.I., Leonardis, A., Zheng, F., Chang, H.J.: S2Contact: graph-based network for 3d hand-object contact estimation with semi-supervised learning. In: ECCV (2022)

    Google Scholar 

  43. Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. NeurIPS (2017)

    Google Scholar 

  44. Wang, H., Zhang, Z., Cheng, Y., Chang, H.J.: High-fidelity eye animatable neural radiance fields for human face. BMVC (2023)

    Google Scholar 

  45. Wang, H., Zhang, Z., Cheng, Y., Chang, H.J.: Textgaze: gaze-controllable face generation with natural language. MM (2024)

    Google Scholar 

  46. Wu, Y., Wang, J., Zhang, Y., Zhang, S., Hilliges, O., Yu, F., Tang, S.: Saga: Stochastic whole-body grasping with contact. In: ECCV (2022)

    Google Scholar 

  47. Xie, W., Zhao, Z., Li, S., Zuo, B., Wang, Y.: Nonrigid object contact estimation with regional unwrapping transformer. In: ICCV (2023)

    Google Scholar 

  48. Yang, L., et al.: Oakink: a large-scale knowledge repository for understanding hand-object interaction. In: CVPR (2022)

    Google Scholar 

  49. Yang, L., Zhan, X., Li, K., Xu, W., Li, J., Lu, C.: CPF: Learning a contact potential field to model the hand-object interaction. In: ICCV (2021)

    Google Scholar 

  50. Ye, Y., Hebbar, P., Gupta, A., Tulsiani, S.: Diffusion-guided reconstruction of everyday hand-object interaction clips. In: ICCV (2023)

    Google Scholar 

  51. Yu, Z., Yang, L., Xie, Y., Chen, P., Yao, A.: Uv-based 3d hand-object reconstruction with grasp optimization. BMVC (2022)

    Google Scholar 

  52. Zhang, H., Ye, Y., Shiratori, T., Komura, T.: Manipnet: neural manipulation synthesis with a hand-object spatial representation. ACM Trans. Graph. (ToG) (2021)

    Google Scholar 

  53. Zhou, K., Bhatnagar, B.L., Lenssen, J.E., Pons-Moll, G.: TOCH: Spatio-temporal object-to-hand correspondence for motion refinement. In: ECCV (2022)

    Google Scholar 

  54. Zhu, Z., Wang, J., Qin, Y., Sun, D., Jampani, V., Wang, X.: Contactart: Learning 3d interaction priors for category-level articulated object and hand poses estimation. 3DV (2024)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2024-2020-0-01789) supervised by the IITP (Institute for Information & Communications Technology Planning & Evaluation), the National Research Foundation Singapore and DSO National Laboratories under the AI Singapore Programme (Award Number: AISG2-RP-2020-016), China Scholarship Council (CSC) Grant No. 202208060266 and No. 202006210057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihua Cheng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1077 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Wang, H., Yu, Z., Cheng, Y., Yao, A., Chang, H.J. (2025). NL2Contact: Natural Language Guided 3D Hand-Object Contact Modeling with Diffusion Model. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15086. Springer, Cham. https://doi.org/10.1007/978-3-031-73390-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73390-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73389-5

  • Online ISBN: 978-3-031-73390-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics