Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

SUPERGAUSSIAN: Repurposing Video Models for 3D Super Resolution

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

We present a simple, modular, and generic method that upsamples coarse 3D models by adding geometric and appearance details. While generative 3D models now exist, they do not yet match the quality of their counterparts in image and video domains. We demonstrate that it is possible to directly repurpose existing (pre-trained) video models for 3D super-resolution and thus sidestep the problem of the shortage of large repositories of high-quality 3D training models. We describe how to repurpose video upsampling models – which are not 3D consistent – and combine them with 3D consolidation to produce 3D-consistent results. As output, we produce high-quality Gaussian Splat models, which are object-centric and effective. Our method is category-agnostic and can be easily incorporated into existing 3D workflows. We evaluate our proposed SuperGaussian on a variety of 3D inputs, which are diverse both in terms of complexity and representation (e.g., Gaussian Splats or NeRFs), and demonstrate that our simple method significantly improves the fidelity of current generative 3D models.

Check our project website for details: supergaussian.github.io.

Y. Shen—This project was done during Yuan’s internship at Adobe Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/graphdeco-inria/gaussian-splatting.

References

  1. Sora: Creating video from text. https://openai.com/sora. Accessed 05 March 2024

  2. Anciukevičius, T., et al.: RenderDiffusion: image diffusion for 3D reconstruction, inpainting and generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023)

    Google Scholar 

  3. Bahat, Y., Michaeli, T.: Explorable super resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2716–2725 (2020)

    Google Scholar 

  4. Barron, J.T.: A general and adaptive robust loss function. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  5. Bautista, M.A., et al.: GAUDI: a neural architect for immersive 3D scene generation (2022)

    Google Scholar 

  6. Chai, W., Guo, X., Wang, G., Lu, Y.: StableVideo: text-driven consistency-aware diffusion video editing. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2023)

    Google Scholar 

  7. Chan, E.R., et al.: Efficient geometry-aware 3D generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16123–16133 (2022)

    Google Scholar 

  8. Chan, K.C., Wang, X., Yu, K., Dong, C., Loy, C.C.: BasicVSR: the search for essential components in video super-resolution and beyond. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4947–4956 (2021)

    Google Scholar 

  9. Chan, K.C., Zhou, S., Xu, X., Loy, C.C.: BasicVSR++: improving video super-resolution with enhanced propagation and alignment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)

    Google Scholar 

  10. Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: TensoRF: tensorial radiance fields. In: Proceedings of the European Conference on Computer Vision (ECCV) (2022)

    Google Scholar 

  11. Chen, H., et al.: Real-world single image super-resolution: a brief review. Inf. Fusion 79(C), 124–145 (2022)

    Google Scholar 

  12. Chen, X., et al.: HAT: hybrid attention transformer for image restoration. arXiv preprint arXiv:2309.05239 (2023)

  13. Chen, X., Wang, X., Zhou, J., Qiao, Y., Dong, C.: Activating more pixels in image super-resolution transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 22367–22377 (2023)

    Google Scholar 

  14. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 184–199 (2014)

    Google Scholar 

  15. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 391–407 (2016)

    Google Scholar 

  16. Dong, Z., Chen, X., Yang, J., J.Black, M., Hilliges, O., Geiger, A.: AG3D: learning to generate 3D avatars from 2D image collections. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2023)

    Google Scholar 

  17. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 27 (2014)

    Google Scholar 

  18. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (NeurIPS) (2014)

    Google Scholar 

  19. Han, Y., Yu, T., Yu, X., Wang, Y., Dai, Q.: Super-NeRF: view-consistent detail generation for NeRF super-resolution. arXiv preprint arXiv:2304.13518 (2023)

  20. Haque, A., Tancik, M., Efros, A., Holynski, A., Kanazawa, A.: Instruct-NeRF2NeRF: editing 3D scenes with instructions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2023)

    Google Scholar 

  21. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in Neural Information Processing Systems (NeurIPS) (2017)

    Google Scholar 

  22. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 33, pp. 6840–6851 (2020)

    Google Scholar 

  23. Huang, X., Li, W., Hu, J., Chen, H., Wang, Y.: RefSR-NeRF: towards high fidelity and super resolution view synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8244–8253 (2023)

    Google Scholar 

  24. Kang, M., et al.: Scaling up GANs for text-to-image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10124–10134 (2023)

    Google Scholar 

  25. Karnewar, A., Vedaldi, A., Novotny, D., Mitra, N.J.: HOLODIFFUSION: training a 3D diffusion model using 2D images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023)

    Google Scholar 

  26. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  27. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D Gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 42(4), 1–14 (2023)

    Article  Google Scholar 

  28. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1646–1654 (2016)

    Google Scholar 

  29. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4681–4690 (2023)

    Google Scholar 

  30. Li, H., et al.: SRDiff: single image super-resolution with diffusion probabilistic models. Neurocomputing 479, 47–59 (2022)

    Article  Google Scholar 

  31. Li, J., et al.: Instant3D: fast text-to-3D with sparse-view generation and large reconstruction model. arXiv preprint arXiv:2311.06214 (2023)

  32. Lin, C.Y., Fu, Q., Merth, T., Yang, K., Ranjan, A.: FastSR-NeRF: improving NeRF efficiency on consumer devices with a simple super-resolution pipeline. In: WACV (2024)

    Google Scholar 

  33. Liu, D., et al.: Robust video super-resolution with learned temporal dynamics. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2507–2515 (2017)

    Google Scholar 

  34. Liu, M., Xu, C., Jin, H., Chen, L., Xu, Z., Su, H., et al.: One-2-3-45: any single image to 3D mesh in 45 seconds without per-shape optimization. arXiv preprint arXiv:2306.16928 (2023)

  35. Lugmayr, A., Danelljan, M., Van Gool, L., Timofte, R.: SRFlow: learning the super-resolution space with normalizing flow. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 715–732 (2020)

    Google Scholar 

  36. Menon, S., Damian, A., Hu, S., Ravi, N., Rudin, C.: PULSE: self-supervised photo upsampling via latent space exploration of generative models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2437–2445 (2020)

    Google Scholar 

  37. Mescheder, L., Geiger, A., Nowozin, S.: Which training methods for GANs do actually converge? In: Proceedings of the International Conference on Machine Learning (ICML). PMLR (2018)

    Google Scholar 

  38. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)

    Article  Google Scholar 

  39. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a completely blind image quality analyzer. IEEE Sig. Process. Lett. 20(3), 209–212 (2013)

    Article  Google Scholar 

  40. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695 (2022)

    Google Scholar 

  41. Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D.J., Norouzi, M.: Image super-resolution via iterative refinement. IEEE TPAMI 45(4), 4713–4726 (2023)

    Google Scholar 

  42. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. Adv. Neural Inf. Process. Syst. 29 (2016)

    Google Scholar 

  43. Schuhmann, C., et al.: LAION-5b: an open large-scale dataset for training next generation image-text models. In: Neural Information Processing Systems Datasets and Benchmarks Track (2022)

    Google Scholar 

  44. Shen, Y., et al.: Sim-on-wheels: physical world in the loop simulation for self-driving. IEEE Robot. Autom. Lett. 8(12) (2023)

    Google Scholar 

  45. Shen, Y., Ma, W.C., Wang, S.: SGAM: building a virtual 3D world through simultaneous generation and mapping. In: Advances in Neural Information Processing Systems (NeurIPS) (2022)

    Google Scholar 

  46. Smith, E., Fujimoto, S., Meger, D.: Multi-view silhouette and depth decomposition for high resolution 3D object representation. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems (NeurIPS), pp. 6479–6489. Curran Associates, Inc. (2018)

    Google Scholar 

  47. Tian, Y., Zhang, Y., Fu, Y., Xu, C.: TDAN: temporally-deformable alignment network for video super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  48. Wang, C., Wu, X., Guo, Y.C., Zhang, S.H., Tai, Y.W., Hu, S.M.: NeRF-SR: high quality neural radiance fields using supersampling. In: Proceedings of ACM Multimedia, pp. 6445–6454 (2022)

    Google Scholar 

  49. Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: NeuS: learning neural implicit surfaces by volume rendering for multi-view reconstruction. In: Advances in Neural Information Processing Systems (NeurIPS) (2021)

    Google Scholar 

  50. Wang, T., et al.: RODIN: a generative model for sculpting 3D digital avatars using diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4563–4573 (2022)

    Google Scholar 

  51. Wang, X., Chan, K.C., Yu, K., Dong, C., Loy, C.C.: EDVR: video restoration with enhanced deformable convolutional networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2019)

    Google Scholar 

  52. Wang, X., Xie, L., Dong, C., Shan, Y.: Real-ESRGAN: training real-world blind super-resolution with pure synthetic data. In: International Conference on Computer Vision Workshops (ICCVW) (2021)

    Google Scholar 

  53. Wang, X., Yu, K., Dong, C., Loy, C.C.: Recovering realistic texture in image super-resolution by deep spatial feature transform. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 606–615 (2018)

    Google Scholar 

  54. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: The European Conference on Computer Vision Workshops (ECCVW) (2018)

    Google Scholar 

  55. Xia, H., Fu, Y., Liu, S., Wang, X.: RGBD objects in the wild: scaling real-world 3D object learning from RGB-D videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2024)

    Google Scholar 

  56. Xu, Y., et al.: VideoGigaGan: towards detail-rich video super-resolution (2024)

    Google Scholar 

  57. Yang, C., et al.: GaussianObject: just taking four images to get a high-quality 3D object with Gaussian splatting. arXiv preprint arXiv:2402.10259 (2024)

  58. Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit surfaces. Adv. Neural Inf. Process. Syst. 34, 4805–4815 (2021)

    Google Scholar 

  59. Yi, P., Wang, Z., Jiang, K., Shao, Z., Ma, J.: Multi-temporal ultra dense memory network for video super-resolution. IEEE Trans. Circuits Syst. Video Technol. 30(8), 2503–2516 (2019)

    Google Scholar 

  60. Yoon, Y., Yoon, K.J.: Cross-guided optimization of radiance fields with multi-view image super-resolution for high-resolution novel view synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12428–12438 (2023)

    Google Scholar 

  61. Yu, X., et al.: MVImgNet: a large-scale dataset of multi-view images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023)

    Google Scholar 

  62. Zhang, K., Gool, L.V., Timofte, R.: Deep unfolding network for image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3217–3226 (2020)

    Google Scholar 

  63. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  64. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 286–301 (2018)

    Google Scholar 

  65. Zhao, X., et al.: Fast segment anything. arXiv preprint arXiv:2306.12156 (2023)

  66. Zheng, X.Y., Pan, H., Wang, P.S., Tong, X., Liu, Y., Shum, H.Y.: Locally attentional SDF diffusion for controllable 3D shape generation. ACM Trans. Graph. 42(4) (2023)

    Google Scholar 

  67. Zhou, S., Yang, P., Wang, J., Luo, Y., Loy, C.C.: Upscale-A-Video: temporal-consistent diffusion model for real-world video super-resolution. arXiv preprint arXiv:2312.06640 (2023)

Download references

Acknowledgements

We thank Yiran Xu, Difan Liu, and Taesung Park for discussions related to VideoGigaGAN [56], whose support was essential to the development of SuperGaussian. We also thank Nathan Carr for providing Gaussian Splat examples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duygu Ceylan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8020 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, Y. et al. (2025). SUPERGAUSSIAN: Repurposing Video Models for 3D Super Resolution. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15087. Springer, Cham. https://doi.org/10.1007/978-3-031-73397-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73397-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73396-3

  • Online ISBN: 978-3-031-73397-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics