Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Real Time Multi Organ Classification on Computed Tomography Images

  • Conference paper
  • First Online:
Data Engineering in Medical Imaging (DEMI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15265))

Included in the following conference series:

  • 66 Accesses

Abstract

Organ segmentation is a fundamental task in medical imaging since it is useful for many clinical automation pipelines. However, some tasks do not require full segmentation. Instead, a classifier can identify the selected organ without segmenting the entire volume. In this study, we demonstrate a classifier based method to obtain organ labels in real time by using a large context size with a sparse data sampling strategy. Although our method operates as an independent classifier at query locations, it can generate full segmentations by querying grid locations at any resolution, offering faster performance than segmentation algorithms. We compared our method with existing segmentation techniques, demonstrating its superior runtime potential for practical applications in medical imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.synapse.org/#!Synapse:syn3193805/wiki/217789.

References

  1. Azad, R., et al.: Beyond self-attention: deformable large kernel attention for medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1287–1297 (2024)

    Google Scholar 

  2. Bai, X., Xia, Y.: SAM++: enhancing anatomic matching using semantic information and structural inference. arXiv preprint arXiv:2306.13988 (2023)

  3. Cao, H., et al. Swin-Unet: Unet-like pure transformer for medical image segmentation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) European Conference on Computer Vision,vol. 13803, pp. 205–218. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-25066-8_9

  4. Chen, Z., Agarwal, D., Aggarwal, K., Safta, W., Balan, M.M., Brown, K.: Masked image modeling advances 3D medical image analysis. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1970–1980 (2023)

    Google Scholar 

  5. Ghesu, F.C., Georgescu, B., Grbic, S., Maier, A.K., Hornegger, J., Comaniciu, D.: Robust multi-scale anatomical landmark detection in incomplete 3D-CT data. In: Maier, A., Deserno, T., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds.) International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 194–202. Springer, Cham (2017). https://doi.org/10.1007/978-3-662-56537-7_24

  6. Gibson, E., et al.: Automatic multi-organ segmentation on abdominal CT with dense V-networks. IEEE Trans. Med. Imaging 37(8), 1822–1834 (2018)

    Article  Google Scholar 

  7. Goncharov, M., Soboleva, V., Kurmukov, A., Pisov, M., Belyaev, M.: vox2vec: a framework for self-supervised contrastive learning of voxel-level representations in medical images. In: Greenspan, H., et al. (eds.) International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–614. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43907-0_58

  8. Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., Xu, D.: Swin UNETR: Swin transformers for semantic segmentation of brain tumors in MRI images. In: Crimi, A., Bakas, S. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, BrainLes 2021. LNCS, vol. 12962, pp. 272–284. Springer, Cham (2021). https://doi.org/10.1007/978-3-031-08999-2_22

  9. Hatamizadeh, A., et al.: UNETR: transformers for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 574–584 (2022)

    Google Scholar 

  10. Myronenko, A., Yang, D., He, Y., Xu, D.: Automated segmentation of organs and tumors from partially labeled 3D CT in MICCAI flare 2023 challenge (2023)

    Google Scholar 

  11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  12. Shaker, A., Maaz, M., Rasheed, H., Khan, S., Yang, M.-H., Khan, F.S.: UNETR++: delving into efficient and accurate 3D medical image segmentation. arXiv preprint arXiv:2212.04497 (2022)

  13. Tadokoro, R., Yamada, R., Kataoka, H.: Pre-training auto-generated volumetric shapes for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4739–4744 (2023)

    Google Scholar 

  14. Wasserthal, J., et al.: TotalSegmentator: robust segmentation of 104 anatomic structures in CT images. Radiol. Artif. Intell. 5(5) (2023)

    Google Scholar 

  15. Yan, K., et al.: SAM: self-supervised learning of pixel-wise anatomical embeddings in radiological images. IEEE Trans. Med. Imaging 41(10), 2658–2669 (2022)

    Article  Google Scholar 

  16. Yang, J., et al.: MedMNIST v2-a large-scale lightweight benchmark for 2D and 3D biomedical image classification. Sci. Data 10(1), 41 (2023)

    Article  Google Scholar 

  17. Yerebakan, H.Z., Shinagawa, Y., Ranganath, M., Allen-Raffl, S., Valadez, G.H.: A hierarchical descriptor framework for on-the-fly anatomical location matching between longitudinal studies. CoRR abs/2308.07337 (2023)

    Google Scholar 

  18. Zhou, Z., Rahman Siddiquee, Md.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, 20 September 2018, Proceedings 4, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halid Ziya Yerebakan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yerebakan, H.Z., Shinagawa, Y., Valadez, G.H. (2025). Real Time Multi Organ Classification on Computed Tomography Images. In: Bhattarai, B., et al. Data Engineering in Medical Imaging. DEMI 2024. Lecture Notes in Computer Science, vol 15265. Springer, Cham. https://doi.org/10.1007/978-3-031-73748-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73748-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73747-3

  • Online ISBN: 978-3-031-73748-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics