Abstract
Organ segmentation is a fundamental task in medical imaging since it is useful for many clinical automation pipelines. However, some tasks do not require full segmentation. Instead, a classifier can identify the selected organ without segmenting the entire volume. In this study, we demonstrate a classifier based method to obtain organ labels in real time by using a large context size with a sparse data sampling strategy. Although our method operates as an independent classifier at query locations, it can generate full segmentations by querying grid locations at any resolution, offering faster performance than segmentation algorithms. We compared our method with existing segmentation techniques, demonstrating its superior runtime potential for practical applications in medical imaging.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Azad, R., et al.: Beyond self-attention: deformable large kernel attention for medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1287–1297 (2024)
Bai, X., Xia, Y.: SAM++: enhancing anatomic matching using semantic information and structural inference. arXiv preprint arXiv:2306.13988 (2023)
Cao, H., et al. Swin-Unet: Unet-like pure transformer for medical image segmentation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) European Conference on Computer Vision,vol. 13803, pp. 205–218. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-25066-8_9
Chen, Z., Agarwal, D., Aggarwal, K., Safta, W., Balan, M.M., Brown, K.: Masked image modeling advances 3D medical image analysis. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1970–1980 (2023)
Ghesu, F.C., Georgescu, B., Grbic, S., Maier, A.K., Hornegger, J., Comaniciu, D.: Robust multi-scale anatomical landmark detection in incomplete 3D-CT data. In: Maier, A., Deserno, T., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds.) International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 194–202. Springer, Cham (2017). https://doi.org/10.1007/978-3-662-56537-7_24
Gibson, E., et al.: Automatic multi-organ segmentation on abdominal CT with dense V-networks. IEEE Trans. Med. Imaging 37(8), 1822–1834 (2018)
Goncharov, M., Soboleva, V., Kurmukov, A., Pisov, M., Belyaev, M.: vox2vec: a framework for self-supervised contrastive learning of voxel-level representations in medical images. In: Greenspan, H., et al. (eds.) International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–614. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43907-0_58
Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., Xu, D.: Swin UNETR: Swin transformers for semantic segmentation of brain tumors in MRI images. In: Crimi, A., Bakas, S. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, BrainLes 2021. LNCS, vol. 12962, pp. 272–284. Springer, Cham (2021). https://doi.org/10.1007/978-3-031-08999-2_22
Hatamizadeh, A., et al.: UNETR: transformers for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 574–584 (2022)
Myronenko, A., Yang, D., He, Y., Xu, D.: Automated segmentation of organs and tumors from partially labeled 3D CT in MICCAI flare 2023 challenge (2023)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Shaker, A., Maaz, M., Rasheed, H., Khan, S., Yang, M.-H., Khan, F.S.: UNETR++: delving into efficient and accurate 3D medical image segmentation. arXiv preprint arXiv:2212.04497 (2022)
Tadokoro, R., Yamada, R., Kataoka, H.: Pre-training auto-generated volumetric shapes for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4739–4744 (2023)
Wasserthal, J., et al.: TotalSegmentator: robust segmentation of 104 anatomic structures in CT images. Radiol. Artif. Intell. 5(5) (2023)
Yan, K., et al.: SAM: self-supervised learning of pixel-wise anatomical embeddings in radiological images. IEEE Trans. Med. Imaging 41(10), 2658–2669 (2022)
Yang, J., et al.: MedMNIST v2-a large-scale lightweight benchmark for 2D and 3D biomedical image classification. Sci. Data 10(1), 41 (2023)
Yerebakan, H.Z., Shinagawa, Y., Ranganath, M., Allen-Raffl, S., Valadez, G.H.: A hierarchical descriptor framework for on-the-fly anatomical location matching between longitudinal studies. CoRR abs/2308.07337 (2023)
Zhou, Z., Rahman Siddiquee, Md.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, 20 September 2018, Proceedings 4, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yerebakan, H.Z., Shinagawa, Y., Valadez, G.H. (2025). Real Time Multi Organ Classification on Computed Tomography Images. In: Bhattarai, B., et al. Data Engineering in Medical Imaging. DEMI 2024. Lecture Notes in Computer Science, vol 15265. Springer, Cham. https://doi.org/10.1007/978-3-031-73748-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-73748-0_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73747-3
Online ISBN: 978-3-031-73748-0
eBook Packages: Computer ScienceComputer Science (R0)