Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Artificial Intelligence and Machine Learning in Precision Health: An Overview of Methods, Challenges, and Future Directions

  • Chapter
  • First Online:
Dynamics of Disasters

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 217))

  • 114 Accesses

Abstract

Conventional medical practices rely on population-derived guidelines, striving for optimal outcomes for the “average” patient through a so-called “one-size-fits-all” approach. Precision health, on the other hand, enhances health decision-making by considering individual characteristics such as genotype, environment, and lifestyle. An in-depth analysis of the roles played by artificial intelligence (AI) and machine learning (ML) in precision health, personalized care, and disease prevention contributes to a comprehensive understanding of the dynamic healthcare landscape. This chapter navigates the paradigm shift from traditional medical practices to the burgeoning field of precision health, grounded in AI and modern ML. We provide a comprehensive overview of the application of AI/ML in three precision health categories: disease screening and detection, disease monitoring and progression, and treatment selection and outcome prediction. While addressing challenges in data quality and fairness, this chapter discusses the diverse considerations of stakeholders in realizing the benefits of precision health. Delving into AI/ML techniques, this chapter addresses challenges posed by massive multimodal health data, ensuring model trustworthiness and fairness, and highlighting notable techniques. Furthermore, this chapter extends to AI/ML applications, addressing diverse stakeholders’ needs, and discusses challenges in the practical application of AI/ML in precision health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hillestad R, Bigelow J, Bower A, Girosi F, Meili R, Scoville R, et al. Can Electronic Medical Record Systems Transform Health Care? Potential Health Benefits, Savings, And Costs. Health Affairs. 2005 Sep;24(5):1103–17.

    Google Scholar 

  2. Forbes. AI And Healthcare: A Giant Opportunity [Internet]. 2019. Available from: https://www.forbes.com/sites/insights-intelai/2019/02/11/ai-and-healthcare-a-giant-opportunity/#3afb11224c68

  3. CDC. Precision health: Improving health for each of us and all of us. 2022.

    Google Scholar 

  4. Journal Selection for MEDLINE [Internet]. U.S. National Library of Medicine; [cited 2024 Mar 21]. Available from: https://www.nlm.nih.gov/medline/medline_journal_selection.html

  5. Ashley EA. Towards precision medicine. Nat Rev Genet. 2016 Sep;17(9):507–22.

    Google Scholar 

  6. Definition of precision medicine - NCI Dictionary of Cancer Terms - NCI [Internet]. 2011 [cited 2023 Nov 13]. Available from: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/precision-medicine

  7. Coote JH, Joyner MJ. Is precision medicine the route to a healthy world? Lancet. 2015 Apr 25;385(9978):1617.

    Google Scholar 

  8. Horgan D, Paradiso A, McVie G, Banks I, Van der Wal T, Brand A, et al. Is precision medicine the route to a healthy world? Lancet. 2015 Jul 25;386(9991):336–7.

    Google Scholar 

  9. An integrated research policy roadmap to embed personalised medicine in European Health Systems [Internet]. European Alliance for Personalized Medicine; 2014.

    Google Scholar 

  10. Johnson KB, Wei W, Weeraratne D, Frisse ME, Misulis K, Rhee K, et al. Precision medicine, AI, and the future of personalized health care. Clinical and Translational Science. 2021;14(1):86–93.

    Article  Google Scholar 

  11. Cammarota G, Ianiro G, Ahern A, Carbone C, Temko A, Claesson MJ, et al. Gut microbiome, big data and machine learning to promote precision medicine for cancer. Nat Rev Gastroenterol Hepatol. 2020 Oct;17(10):635–48.

    Google Scholar 

  12. Martinez N, Bertran M, Sapiro G. Fairness with minimal harm: A Pareto-optimal approach for healthcare. arXiv preprint arXiv:191106935. 2019;

    Google Scholar 

  13. Handelman GS, Kok HK, Chandra RV, Razavi AH, Lee MJ, Asadi H. eDoctor: machine learning and the future of medicine. Journal of Internal Medicine. 2018;284(6):603–19.

    Article  Google Scholar 

  14. Deswal S, Bulusu KC, Agapow PM, Khan FM. Precision medicine. In: The Era of Artificial Intelligence, Machine Learning, and Data Science in the Pharmaceutical Industry. Academic Press; 2021. p. 139–57.

    Chapter  Google Scholar 

  15. Chapelle O, Schlkopf B, Zien A. Semi-Supervised Learning. The MIT Press; Cambridge, Massachusetts; 2010.

    Google Scholar 

  16. Wang S, Wang Y, Wang D, Yin Y, Wang Y, Jin Y. An improved random forest-based rule extraction method for breast cancer diagnosis. Applied Soft Computing. 2020;86.

    Google Scholar 

  17. Wang H, Zheng B, Yoon S, Ko HS. A support vector machine-based ensemble algorithm for breast cancer diagnosis. European Journal of Operational Research. 2018;267(2):687–99.

    Article  MathSciNet  Google Scholar 

  18. Caliskan A, Badem H, Basturk A, Yuksel ME. Diagnosis of the Parkinson disease by using deep neural network classifier. IU-Journal of Electrical & Electronics Engineering. 2017;17(2):3311–8.

    Google Scholar 

  19. Zhang N, Cai YX, Wang YY, Tian YT, Wang XL, Badami B. Skin cancer diagnosis based on optimized convolutional neural network. Artificial Intelligence in Medicine. 2020;102:101756.

    Article  Google Scholar 

  20. Oh SL, Hagiwara Y, Raghavendra U, Yuvaraj R, Arunkumar N, Murugappan M, et al. A deep learning approach for Parkinson’s disease diagnosis from EEG signals. Neural Computing and Applications. 2020;32(15):10927–33.

    Article  Google Scholar 

  21. Gkotsis G, Oellrich A, Velupillai S, Liakata M, Hubbard TJ, Dobson RJ, et al. Characterisation of mental health conditions in social media using Informed Deep Learning. Scientific Reports. 2017;7(1):1–11.

    Google Scholar 

  22. Alhassan Z, McGough AS, Alshammari R, Daghstani T, Budgen D, Al Moubayed N. Type-2 diabetes mellitus diagnosis from time series clinical data using deep learning models. In: International Conference on Artificial Neural Networks. Springer, Cham; 2018. p. 468–78.

    Google Scholar 

  23. Pereira CR, Weber SA, Hook C, Rosa GH, Papa JP. Deep learning-aided Parkinson’s disease diagnosis from handwritten dynamics. In: 2016 29th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI). 2016. p. 340–6.

    Google Scholar 

  24. Chakraborty S, Tomsett R, Raghavendra R, Harborne D, Alzantot M, Cerutti F, et al. Interpretability of deep learning models: A survey of results. In: 2017 IEEE smartworld, ubiquitous intelligence & computing, advanced & trusted computed, scalable computing & communications, cloud & big data computing, Internet of people and smart city innovation (smartworld/SCALCOM/UIC/ATC/CBDcom/IOP/SCI). 2017. p. 1–6.

    Google Scholar 

  25. Cancer Statistics Center. American Cancer Society; 2018.

    Google Scholar 

  26. Weir HK, Thompson TD, Stewart SL, White MC. Cancer Incidence Projections in the United States Between 2015 and 2050. Preventing Chronic Disease. 2021 Jun;18.

    Google Scholar 

  27. Schiffman JD, Fisher PG, Gibbs P. Early detection of cancer: past, present, and future. American Society of Clinical Oncology Educational Book. 2015;35(1):57–65.

    Article  Google Scholar 

  28. Fass L. Imaging and cancer: A review. Molecular Oncology. 2008 Aug 1;2(2):115–52.

    Google Scholar 

  29. Zhang X, Zhang J, Sun K, Yang X, Dai C, Guo Y. Integrated multi-omics analysis using variational autoencoders: Application to pan-cancer classification. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE; 2019. p. 765–9.

    Chapter  Google Scholar 

  30. Shahid AH, Singh MP. A deep learning approach for prediction of Parkinson’s disease progression. Biomedical Engineering Letters. 2020;10(2):227–39.

    Article  Google Scholar 

  31. Lee G, Nho K, Kang B, Sohn KA, Kim D. Predicting Alzheimer’s disease progression using multi-modal deep learning approach. Scientific Reports. 2019;9(1):1–12.

    Google Scholar 

  32. El-Sappagh S, Abuhmed T, Islam SR, Kwak KS. Multimodal multitask deep learning model for Alzheimer’s disease progression detection based on time series data. Neurocomputing. 2020;412:197–215.

    Article  Google Scholar 

  33. Tousignant A, Lemaître P, Precup D, Arnold DL, Arbel T. Prediction of disease progression in multiple sclerosis patients using deep learning analysis of MRI data. In: International Conference on Medical Imaging with Deep Learning. PMLR; 2019. p. 483–92.

    Google Scholar 

  34. Barash Y, Klang E. Automated quantitative assessment of oncological disease progression using deep learning. Annals of Translational Medicine. 2019;7(Suppl 8).

    Google Scholar 

  35. Eulenberg P, Köhler N, Blasi T, Filby A, Carpenter AE, Rees P, et al. Reconstructing cell cycle and disease progression using deep learning. Nature Communications. 2017;8(1):1–6.

    Article  Google Scholar 

  36. Young T, Hazarika D, Poria S, Cambria E. Recent trends in deep learning based natural language processing. IEEE Computational Intelligence Magazine. 2018;13(3):55–75.

    Article  Google Scholar 

  37. Deng L, Hinton G, Kingsbury B. New types of deep neural network learning for speech recognition and related applications: An overview. In: 2013 IEEE international conference on acoustics, speech and signal processing. 2013. p. 8599–603.

    Google Scholar 

  38. Luo B, Wang H, Liu H, Li B, Peng F. Early fault detection of machine tools based on deep learning and dynamic identification. IEEE Transactions on Industrial Electronics. 2018;66(1):509–18.

    Article  Google Scholar 

  39. Zhang L, Lu L, Wang X, Zhu RM, Bagheri M, Summers RM, et al. Spatio-temporal convolutional LSTMs for tumor growth prediction by learning 4D longitudinal patient data. IEEE Transactions on Medical Imaging. 2020;39(4):1114–26.

    Article  Google Scholar 

  40. Huang C, Mezencev R, McDonald JF, Vannberg F. Open source machine-learning algorithms for the prediction of optimal cancer drug therapies. PLoS One. 2017;12(10):e0186906.

    Article  Google Scholar 

  41. Hartmaier RJ, Albacker LA, Chmielecki J, Bailey M, He J, Goldberg ME, et al. High-throughput genomic profiling of adult solid tumors reveals novel insights into cancer pathogenesis. Cancer Research. 2017;77(9):2464–75.

    Article  Google Scholar 

  42. Katzman JL, Shaham U, Cloninger A, Bates J, Jiang T, Kluger Y. DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Medical Research Methodology. 2018;18(1):1–12.

    Article  Google Scholar 

  43. Yousefi S, Amrollahi F, Amgad M, Dong C, Lewis JE, Song C, et al. Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models. Scientific Reports. 2017;7(1):1–11.

    Article  Google Scholar 

  44. Lee C, Zame WR, Yoon J, van der Schaar M. Deephit: A deep learning approach to survival analysis with competing risks. In: Thirty-second AAAI Conference on Artificial Intelligence. 2018.

    Google Scholar 

  45. Bychkov D, Linder N, Tiulpin A, Kücükel H, Lundin M, Nordling S, et al. Deep learning identifies morphological features in breast cancer predictive of cancer ERBB2 status and trastuzumab treatment efficacy. Scientific Reports. 2021;11(1):1–10.

    Google Scholar 

  46. Bice N, Kirby N, Bahr T, Rasmussen K, Saenz D, Wagner T, et al. Deep learning-based survival analysis for brain metastasis patients with the national cancer database. Journal of Applied Clinical Medical Physics. 2020;21(9):187–92.

    Article  Google Scholar 

  47. Chen JB, Yang HS, Moi SH, Chuang LY, Yang CH. Identification of mortality-risk-related missense variant for renal clear cell carcinoma using deep learning. Therapeutic Advances in Chronic Disease. 2021 Jan 1;12:2040622321992624.

    Google Scholar 

  48. Chang SW, Abdul-Kareem S, Merican AF, Zain RB. Oral cancer prognosis based on clinicopathologic and genomic markers using a hybrid of feature selection and machine learning methods. BMC Bioinformatics. 2013;14(1):1–15.

    Article  Google Scholar 

  49. Asoh H, Akaho MSS, Kamishima T, Hasida K, Aramaki E, Kohro T. An application of inverse reinforcement learning to medical records of diabetes treatment. In: ECMLPKDD2013 workshop on reinforcement learning with generalized feedback. 2013.

    Google Scholar 

  50. Bothe MK, Dickens L, Reichel K, Tellmann A, Ellger B, Westphal M, et al. The use of reinforcement learning algorithms to meet the challenges of an artificial pancreas. Expert Review of Medical Devices. 2013 Sep;10(5):661–73.

    Google Scholar 

  51. Nemati S, Ghassemi MM, Clifford GD. Optimal medication dosing from suboptimal clinical examples: A deep reinforcement learning approach. In: 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2016. p. 2978–81.

    Google Scholar 

  52. Konrad R, Bjarndóttir M, Proaño R. Key considerations when using health insurance claims data in advanced data analyses: An experience report. Health Systems. 2020;9(4):317–25.

    Article  Google Scholar 

  53. Marcus JL, Hurley LB, Krakower DS, Alexeeff S, Silverberg MJ, Volk JE. Use of electronic health record data and machine learning to identify candidates for HIV pre-exposure prophylaxis: a modelling study. The Lancet HIV. 2019;6(10):e688–95.

    Article  Google Scholar 

  54. Jin Z, Oresko J, Huang S, Cheng AC. HeartToGo: a personalized medicine technology for cardiovascular disease prevention and detection. In: 2009 IEEE/NIH Life Science Systems and Applications Workshop. 2009. p. 80–3.

    Google Scholar 

  55. Ross EG, Shah NH, Dalman RL, Nead KT, Cooke JP, Leeper NJ. The use of machine learning for the identification of peripheral artery disease and future mortality risk. Journal of Vascular Surgery. 2016;64(5):1515–22.

    Article  Google Scholar 

  56. Joyseeree R, Abou Sabha R, Mueller H. Applying machine learning to gait analysis data for disease identification. Digital Healthcare Empowering Europeans. 2015;850–4.

    Google Scholar 

  57. Orange DE, Agius P, DiCarlo EF, Robine N, Geiger H, Szymonifka J, et al. Identification of three rheumatoid arthritis disease subtypes by machine learning integration of synovial histologic features and RNA sequencing data. Arthritis & Rheumatology. 2018;70(5):690–701.

    Article  Google Scholar 

  58. Barman RK, Mukhopadhyay A, Maulik U, Das S. Identification of infectious disease-associated host genes using machine learning techniques. BMC Bioinformatics. 2019;20(1):1–12.

    Article  Google Scholar 

  59. Piñero J, Manuel Ramírez-Anguita J, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F, et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucl Acids Res. 2019;

    Google Scholar 

  60. Orgueira AM, Pérez MSG, Arias JÁD, Rodríguez BA, Vence NA, López ÁB, et al. Survival prediction and treatment optimization of multiple myeloma patients using machine-learning models based on clinical and gene expression data. Leukemia. 2021;1–12.

    Google Scholar 

  61. Cheerla N, Gevaert O. MicroRNA based Pan-Cancer Diagnosis and Treatment Recommendation. BMC Bioinformatics. 2017 Jan 13;18(1):32.

    Google Scholar 

  62. Wang L, Zhang W, He X, Zha H. Supervised reinforcement learning with recurrent neural network for dynamic treatment recommendation. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018. p. 2447–56.

    Google Scholar 

  63. Howard FM, Kochanny S, Koshy M, Spiotto M, Pearson AT. Machine Learning–Guided Adjuvant Treatment of Head and Neck Cancer. JAMA Network Open. 2020;3(11):e2025881–e2025881.

    Article  Google Scholar 

  64. Tabl AA, Alkhateeb A, ElMaraghy W, Rueda L, Ngom A. A machine learning approach for identifying gene biomarkers guiding the treatment of breast cancer. Frontiers in Genetics. 2019;10:256.

    Article  Google Scholar 

  65. Menden MP, Iorio F, Garnett M, McDermott U, Benes CH, Ballester PJ, et al. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS one. 2013;8(4):e61318.

    Article  Google Scholar 

  66. Xu Y, Hosny A, Zeleznik R, Parmar C, Coroller T, Franco I, et al. Deep learning predicts lung cancer treatment response from serial medical imaging. Clinical Cancer Research. 2019;25(11):3266–75.

    Article  Google Scholar 

  67. Turkki R, Byckhov D, Lundin M, Isola J, Nordling S, Kovanen PE, et al. Breast cancer outcome prediction with tumour tissue images and machine learning. Breast Cancer Research and Treatment. 2019;177(1):41–52.

    Article  Google Scholar 

  68. Wu Q, Zhao W. Small-cell lung cancer detection using a supervised machine learning algorithm. In: 2017 International Symposium on Computer Science and Intelligent Controls (ISCSIC). IEEE; 2017. p. 88–91.

    Google Scholar 

  69. Masci J, Meier U, Cireşan D, Schmidhuber J. Stacked convolutional auto-encoders for hierarchical feature extraction. In: International Conference on Artificial Neural Networks. Springer; 2011. p. 52–9.

    Google Scholar 

  70. Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for medical imaging. Radiographics. 2017;37(2):505–15.

    Article  Google Scholar 

  71. Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. Journal of Big Data. 2019;6(1):1–48.

    Article  Google Scholar 

  72. Frid-Adar M, Diamant I, Klang E, Amitai M, Goldberger J, Greenspan H. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing. 2018;321:321–31.

    Article  Google Scholar 

  73. Han C, Rundo L, Araki R, Nagano Y, Furukawa Y, Mauri G, et al. Combining noise-to-image and image-to-image GANs: brain MR image augmentation for tumor detection. IEEE Access. 2019;7:156966–77.

    Article  Google Scholar 

  74. Wu E, Wu K, Cox D, Lotter W. Conditional infilling GANs for data augmentation in mammogram classification. In: Image Analysis for Moving Organ, Breast, and Thoracic Images. Springer, Cham; 2018. p. 98–106.

    Chapter  Google Scholar 

  75. Nguyen M, Sun N, Alexander DC, Feng J, Yeo BT. Modeling Alzheimer’s disease progression using deep recurrent neural networks. In: 2018 International Workshop on Pattern Recognition in Neuroimaging (PRNI). 2018. p. 1–4.

    Google Scholar 

  76. Yang Y, Fasching PA, Tresp V. Modeling progression free survival in breast cancer with tensorized recurrent neural networks and accelerated failure time models. In: Machine Learning for Healthcare Conference. PMLR; 2017. p. 164–76.

    Google Scholar 

  77. Kim H, Lim Y, Seo S, Lee K, Kim J, Shin W. A Deep Recurrent Neural Network-Based Explainable Prediction Model for Progression from Atrophic Gastritis to Gastric Cancer. Applied Sciences. 2021;11(13):6194.

    Article  Google Scholar 

  78. Azizi S, Bayat S, Yan P, Tahmasebi A, Kwak JT, Xu S, et al. Deep recurrent neural networks for prostate cancer detection: analysis of temporal enhanced ultrasound. IEEE Transactions on Medical Imaging. 2018;37(12):2695–703.

    Article  Google Scholar 

  79. Zhao A, Qi L, Li J, Dong J, Yu H. LSTM for diagnosis of neurodegenerative diseases using gait data. In: Ninth International Conference on Graphic and Image Processing (ICGIP 2017). International Society for Optics and Photonics; 2018.

    Google Scholar 

  80. Jin B, Che C, Liu Z, Zhang S, Yin X, Wei X. Predicting the risk of heart failure with EHR sequential data modeling. IEEE Access. 2018;6:9256–61.

    Article  Google Scholar 

  81. Zhang GP. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing. 2003;50:159–75.

    Article  Google Scholar 

  82. Graves A, Mohamed AR, Hinton G. Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE; 2013. p. 6645–9.

    Chapter  Google Scholar 

  83. Pandey SK, Janghel RR. Recent deep learning techniques, challenges and its applications for medical healthcare system: a review. Neural Processing Letters. 2019;50(2):1907–35.

    Article  Google Scholar 

  84. Wroge TJ, Özkanca Y, Demiroglu C, Si D, Atkins DC, Ghomi RH. Parkinson’s disease diagnosis using machine learning and voice. In: 2018 IEEE Signal Processing in Medicine and Biology Symposium (SPMB). IEEE; 2018. p. 1–7.

    Google Scholar 

  85. Wang W, Chen Z, Mu J, Han T. Throat polyp detection based on compressed big data of voice with support vector machine algorithm. Eurasip Journal on Advances in Signal Processing. 2014;1:1–6.

    Article  Google Scholar 

  86. Aharonson V, de Nooy A, Bulkin S, Sessel G. Automated Classification of Depression Severity Using Speech-A Comparison of Two Machine Learning Architectures. In: 2020 IEEE International Conference on Healthcare Informatics (ICHI). IEEE; 2020. p. 1–4.

    Google Scholar 

  87. Yang F, Wu Q, Hu X, Ye J, Yang Y, Rao H, et al. Internet of things enabled data fusion method for sleep healthcare applications. IEEE Internet of Things Journal. 2021;

    Google Scholar 

  88. Qian K, Li X, Li H, Li S, Li S, Li W, et al. Computer audition for healthcare: Opportunities and challenges. Frontiers in Digital Health. 2020;2.

    Google Scholar 

  89. Gupta A, Katarya R. Social media based surveillance systems for healthcare using machine learning: a systematic review. Journal of Biomedical Informatics. 2020;103500.

    Google Scholar 

  90. Lee K, Agrawal A, Choudhary A. Real-time disease surveillance using twitter data: demonstration on flu and cancer. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2013. p. 1474–7.

    Google Scholar 

  91. Chaudhary S, Naaz S. Use of big data in computational epidemiology for public health surveillance. In: 2017 International Conference on Computing and Communication Technologies for Smart Nation (IC3TSN) [Internet]. 2017 [cited 2023 Nov 14]. p. 150–5. Available from: https://ieeexplore.ieee.org/document/8284467

  92. Conway M, O’Connor D. Social Media, Big Data, and Mental Health: Current Advances and Ethical Implications. Curr Opin Psychol. 2016 Jun;9:77–82.

    Google Scholar 

  93. Gencoglu O, Ermes M. Predicting the flu from Instagram. arXiv preprint arXiv:181110949. 2018;

    Google Scholar 

  94. Chen L, Tozammel Hossain KSM, Butler P, Ramakrishnan N, Prakash BA. Flu Gone Viral: Syndromic Surveillance of Flu on Twitter Using Temporal Topic Models. In: 2014 IEEE International Conference on Data Mining [Internet]. 2014 [cited 2023 Nov 14]. p. 755–60. Available from: https://ieeexplore.ieee.org/document/7023396

  95. Yom-Tov E. Ebola data from the Internet: An opportunity for syndromic surveillance or a news event? Proceedings of the 5th International Conference on Digital Health 2015. 2015;115–9.

    Google Scholar 

  96. Ramadona AL, Tozan Y, Lazuardi L, Rocklöv J. A combination of incidence data and mobility proxies from social media predicts the intra-urban spread of dengue in Yogyakarta, Indonesia. PLoS Neglected Tropical Diseases. 2019;13(4):e0007298.

    Article  Google Scholar 

  97. Reece AG, Danforth CM. Instagram photos reveal predictive markers of depression. EPJ Data Science. 2017;6:1–12.

    Google Scholar 

  98. Jain SH, Powers BW, Hawkins JB, Brownstein JS. The digital phenotype. Nature Biotechnology. 2015;33(5):462–3.

    Article  Google Scholar 

  99. Leff DR, Yang GZ. Big data for precision medicine. Engineering. 2015;1(3):277–9.

    Article  Google Scholar 

  100. McKee R. Ethical issues in using social media for health and health care research. Health Policy. 2013;110(2–3):298–301.

    Article  Google Scholar 

  101. Vishnu S, Ramson SJ, Jegan R. Internet of medical things (IoMT)-An overview. In: 2020 5th International Conference on Devices, Circuits and Systems (ICDCS). IEEE; 2020. p. 101–4.

    Chapter  Google Scholar 

  102. Haghi M, Thurow K, Stoll R. Wearable devices in medical internet of things: scientific research and commercially available devices. Healthcare Informatics Research. 2017;23(1):4–15.

    Article  Google Scholar 

  103. Farrow MJ, Hunter IS, Connolly P. Developing a real time sensing system to monitor bacteria in wound dressings. Biosensors. 2012;2(2):171–88.

    Article  Google Scholar 

  104. Alsubaei F, Abuhussein A, Shiva S. Security and privacy in the internet of medical things: taxonomy and risk assessment. In: 2017 IEEE 42nd Conference on Local Computer Networks Workshops (LCN Workshops). IEEE; 2017. p. 112–20.

    Chapter  Google Scholar 

  105. Brown R, Curry E, Magnani L, Wilhelm-Benartzi CS, Borley J. Poised epigenetic states and acquired drug resistance in cancer. Nature Reviews Cancer. 2014;14(11):747–53.

    Article  Google Scholar 

  106. Zheng T, Wang J, Chen X, Liu L. Role of microRNA in anticancer drug resistance. International Journal of Cancer. 2010;126(1):2–10.

    Article  Google Scholar 

  107. Podnos YD, Smith D, Wagman LD, Ellenhorn J. The implication of lymph node metastasis on survival in patients with well-differentiated thyroid cancer. The American Surgeon. 2005;71(9):731–4.

    Article  Google Scholar 

  108. Behjati S, Tarpey PS. What is next generation sequencing? Archives of Disease in Childhood-Education and Practice. 2013;98(6):236–8.

    Article  Google Scholar 

  109. Zhu W, Xie L, Han J, Guo X. The application of deep learning in cancer prognosis prediction. Cancers. 2020;12(3).

    Google Scholar 

  110. Yu X, Yu G, Wang J. Clustering cancer gene expression data by projective clustering ensemble. PloS one. 2017;12(2).

    Google Scholar 

  111. Chaudhary K, Poirion OB, Lu L, Garmire LX. Deep Learning-Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer. Clinical Cancer Research. 2018;24(6):1248–59.

    Article  Google Scholar 

  112. Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nature Biotechnology. 2015;33(8):831–8.

    Article  Google Scholar 

  113. Singh R, Lanchantin J, Robins G, Qi Y. DeepChrome: deep-learning for predicting gene expression from histone modifications. Bioinformatics. 2016;32(17):i639–48.

    Article  Google Scholar 

  114. Lyu B, Haque A. Deep learning based tumor type classification using gene expression data. In: Proceedings of the 2018 ACM international conference on bioinformatics, computational biology, and health informatics. 2018. p. 89–96.

    Google Scholar 

  115. Rasti S, Vogiatzis C. A survey of computational methods in protein–protein interaction networks. Ann Oper Res. 2019 May 1;276(1):35–87.

    Google Scholar 

  116. Manipur I, Giordano M, Piccirillo M, Parashuraman S, Maddalena L. Community Detection in Protein-Protein Interaction Networks and Applications. IEEE/ACM Trans Comput Biol and Bioinf. 2023 Jan 1;20(1):217–37.

    Google Scholar 

  117. Ma J, Haibe-Kains B, Dai P. A Comparative Study of Cluster Detection Algorithms in Protein–Protein Interaction for Drug Target Discovery and Drug Repurposing. Front Pharmacol [Internet]. 2019 Feb 19 [cited 2024 Mar 12];10. Available from: https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2019.00109/full

  118. Turanli B, Karagoz K, Bidkhori G, Sinha R, Gatza ML, Uhlen M, et al. Multi-Omic Data Interpretation to Repurpose Subtype Specific Drug Candidates for Breast Cancer. Front Genet [Internet]. 2019 May 7 [cited 2024 Mar 12];10. Available from: https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2019.00420/full

  119. Maron BA, Wang RS, Shevtsov S, Drakos SG, Arons E, Wever-Pinzon O, et al. Individualized interactomes for network-based precision medicine in hypertrophic cardiomyopathy with implications for other clinical pathophenotypes. Nat Commun. 2021 Feb 8;12(1):873.

    Google Scholar 

  120. Meng C, Zeleznik OA, Thallinger GG, Kuster B, Gholami AM, Culhane AC. Dimension reduction techniques for the integrative analysis of multi-omics data. Briefings in Bioinformatics. 2016;17(4):628–41.

    Article  Google Scholar 

  121. Bøvelstad HM, Nygård S, Borgan Ø. Survival prediction from clinico-genomic models-a comparative study. BMC Bioinformatics. 2009;10(1):1–9.

    Article  Google Scholar 

  122. Alder S. What is Protected Health Information. HIPAA Journal [Internet]. 2021 Jan 10; Available from: https://www.hipaajournal.com/what-is-protected-health-information/

  123. Menezes AJ, Van Oorschot PC, Vanstone SA. Handbook of Applied Cryptography. CRC Press; 2018.

    Book  Google Scholar 

  124. Kayaalp M. Modes of De-identification. In: AMIA Annual Symposium Proceedings. 2017. p. 1044.

    Google Scholar 

  125. Porat S, Carmeli B, Domany T, Drory T, Kveler K, Melament A, et al. Masking gateway for enterprises. In: Languages: From Formal to Natural. Springer, Berlin, Heidelberg; 2009. p. 177–91.

    Chapter  Google Scholar 

  126. Gai K, Qiu M, Zhao H, Xiong J. Privacy-aware adaptive data encryption strategy of big data in cloud computing. In: 2016 IEEE 3rd International Conference on Cyber Security and Cloud Computing (CSCloud). IEEE; 2016. p. 273–8.

    Google Scholar 

  127. Zhang X, Poslad S. Blockchain support for flexible queries with granular access control to electronic medical records (EMR). In: 2018 IEEE International Conference on Communications (ICC). IEEE; 2018. p. 1–6.

    Google Scholar 

  128. Yao AC. Protocols for secure computations. 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982). 1982;160–4.

    Google Scholar 

  129. Dwork C. Differential privacy. In: International Colloquium on Automata, Languages, and Programming. 2006. p. 1–12.

    Google Scholar 

  130. Kizza JM, Wheeler. Guide to computer network security. Vol. 8. Springer; 2013.

    Book  Google Scholar 

  131. Zubaydi HD, Chong YW, Ko K, Hanshi SM, Karuppayah S. A review on the role of blockchain technology in the healthcare domain. Electronics. 2019;8(6).

    Google Scholar 

  132. Xu J, Glicksberg BS, Su C, Walker P, Bian J, Wang F. Federated learning for healthcare informatics. Journal of Healthcare Informatics Research. 2021;5(1):1–19.

    Article  Google Scholar 

  133. Roth HR, Chang K, Singh P, Neumark N, Li W, Gupta V, et al. Federated learning for breast density classification: A real-world implementation. Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning. 2020;181–91.

    Google Scholar 

  134. Jiménez-Sánchez, Amelia, et al. “Memory-aware curriculum federated learning for breast cancer classification.” Computer Methods and Programs in Biomedicine 229 (2023): 107318.

    Google Scholar 

  135. Melis L, Song C, De Cristofaro E, Shmatikov V. Exploiting unintended feature leakage in collaborative learning. In: 2019 IEEE Symposium on Security and Privacy (SP). IEEE; 2019. p. 691–706.

    Google Scholar 

  136. Lu, Ming Y., Richard J. Chen, Dehan Kong, Jana Lipkova, Rajendra Singh, Drew FK Williamson, Tiffany Y. Chen, and Faisal Mahmood. “Federated learning for computational pathology on gigapixel whole slide images.” Medical image analysis 76 (2022): 102298.

    Google Scholar 

  137. Beguier C, Terrail JOD, Meah I, Andreux M, Tramel EW. Differentially Private Federated Learning for Cancer Prediction. arXiv preprint arXiv:210102997. 2021;

    Google Scholar 

  138. Shokri R, Shmatikov V. Privacy-preserving deep learning. In: Proceedings of the 22nd ACM SIGSAC conference on computer and communications security. 2015. p. 1310–21.

    Google Scholar 

  139. Gupta O, Raskar R. Distributed learning of deep neural network over multiple agents. Journal of Network and Computer Applications. 2018;116:1–8.

    Article  Google Scholar 

  140. Poirot MG, Vepakomma P, Chang K, Kalpathy-Cramer J, Gupta R, Raskar R. Split learning for collaborative deep learning in healthcare. arXiv preprint arXiv:191212115. 2019;

    Google Scholar 

  141. Abuadbba S, Kim K, Kim M, Thapa C, Camtepe SA, Gao Y, et al. Can we use split learning on 1D CNN models for privacy preserving training? In: Proceedings of the 15th ACM Asia Conference on Computer and Communications Security. 2020. p. 305–18.

    Google Scholar 

  142. Gawali M, Arvind CS, Suryavanshi S, Madaan H, Gaikwad A, Prakash KB, et al. Comparison of privacy-preserving distributed deep learning methods in healthcare. In: Annual Conference on Medical Image Understanding and Analysis. Springer, Cham; 2021. p. 457–71.

    Google Scholar 

  143. Thapa, C., Arachchige, P.C.M., Camtepe, S. and Sun, L., 2022, June. Splitfed: When federated learning meets split learning. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 36, No. 8, pp. 8485–8493).

    Google Scholar 

  144. Goyal P, Dollár P, Girshick R, Noordhuis P, Wesolowski L, Kyrola A, et al. Accurate, large minibatch SGD: Training imagenet in 1 hour. In: arXiv preprint arXiv:170602677. 2017.

    Google Scholar 

  145. Thapa C, Camtepe S. Precision health data: Requirements, challenges and existing techniques for data security and privacy. Computers in Biology and Medicine. 2020;104130.

    Google Scholar 

  146. Mhasawade V, Zhao Y, Chunara R. Machine learning and algorithmic fairness in public and population health. Nature Machine Intelligence. 2021;1–8.

    Google Scholar 

  147. About the Pregnancy Mortality Surveillance System (PMSS). Centers for Disease Control and Prevention; 2020.

    Google Scholar 

  148. Kaushal A, Altman R, Langlotz C. Geographic distribution of US cohorts used to train deep learning algorithms. JAMA. 2020;324(12):1212–3.

    Article  Google Scholar 

  149. Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G. Potential biases in machine learning algorithms using electronic health record data. JAMA Internal Medicine. 2018;178(11):1544–7.

    Article  Google Scholar 

  150. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019;366(6464):447–53.

    Article  Google Scholar 

  151. Dwork C, Immorlica N, Kalai AT, Leiserson M. Decoupled classifiers for group-fair and efficient machine learning. In: Conference on Fairness, Accountability and Transparency. 2018. p. 119–33.

    Google Scholar 

  152. Saxena NA. Perceptions of Fairness. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society. 2019. p. 537–8.

    Google Scholar 

  153. Binns R. On the apparent conflict between individual and group fairness. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency [Internet]. Barcelona Spain: ACM; 2020 [cited 2023 Nov 15]. p. 514–24. Available from: https://dl.acm.org/doi/10.1145/3351095.3372864

  154. Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. Ensuring Fairness in Machine Learning to Advance Health Equity. Annals of Internal Medicine. 2018;169(12):866–72.

    Article  Google Scholar 

  155. Friedler, S.A., Scheidegger, C. and Venkatasubramanian, S., 2021. The (im) possibility of fairness: Different value systems require different mechanisms for fair decision making. Communications of the ACM, 64(4), pp.136–143.

    Google Scholar 

  156. Kleinberg J, Mullainathan S, Raghavan M. Inherent trade-offs in the fair determination of risk scores. arXiv preprint arXiv:160905807. 2016;

    Google Scholar 

  157. Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A. A survey on bias and fairness in machine learning. ACM Computing Surveys (CSUR). 2021;54(6):1–35.

    Article  Google Scholar 

  158. Ustun B, Liu Y, Parkes D. Fairness without harm: Decoupled classifiers with preference guarantees. In: International Conference on Machine Learning. 2019. p. 6373–82.

    Google Scholar 

  159. Pfohl SR, Foryciarz A, Shah NH. An empirical characterization of fair machine learning for clinical risk prediction. Journal of Biomedical Informatics. 2021;113:103621.

    Article  Google Scholar 

  160. Krause J, Perer A, Ng K. Interacting with predictions: Visual inspection of black-box machine learning models. In: Proceedings of the 2016 CHI conference on human factors in computing systems. 2016. p. 5686–97.

    Google Scholar 

  161. Goodman B, Flaxman S. European Union regulations on algorithmic decision-making and a “right to explanation.” AI magazine. 2017;38(3):50–7.

    Google Scholar 

  162. Gilpin LH, Bau D, Yuan BZ, Bajwa A, Specter M, Kagal L. Explaining explanations: An overview of interpretability of machine learning. In: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA). IEEE; 2018. p. 80–9.

    Google Scholar 

  163. Arrieta AB, Díaz-Rodríguez N, Del Ser J, Bennetot A, Tabik S, Barbado A, et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion. 2020;58:82–115.

    Article  Google Scholar 

  164. Amirata G, Zou J. Data shapley: Equitable valuation of data for machine learning. In: International Conference on Machine Learning. 2019. p. 2242–51.

    Google Scholar 

  165. Wachter S, Mittelstadt B, Russell C. Counterfactual explanations without opening the black box: Automated decisions and the GDPR. In: Harv JL & Tech. 2017. p. 841.

    Google Scholar 

  166. Elshawi R, Sherif Y, Al-Mallah M, Sakr S. Interpretability in healthcare: A comparative study of local machine learning interpretability techniques. Computational Intelligence. 2020;

    Google Scholar 

  167. Elshawi R, Al-Mallah MH, Sakr S. On the interpretability of machine learning-based model for predicting hypertension. BMC Medical Informatics and Decision Making. 2019;19(1):1–32.

    Article  Google Scholar 

  168. Breiman L. Random Forests. Machine Learning. 2001 Oct 1;45(1):5–32.

    Google Scholar 

  169. Ribeiro MT, Singh S, Guestrin C. Why should I trust you?” Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016. p. 1135–44.

    Google Scholar 

  170. Friedman JH. Greedy function approximation: A gradient boosting machine. Annals of Statistics; 2001. Report No.: 1189–1232.

    Google Scholar 

  171. Bach S, Binder A, Montavon G, Klauschen F, Müller KR, Samek W. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one. 2015;10(7):e0130140.

    Article  Google Scholar 

  172. Zeiler MD, Taylor GW, Fergus R. Adaptive deconvolutional networks for mid and high-level feature learning. In: 2011 International Conference on Computer Vision. IEEE; 2011. p. 2018–25.

    Chapter  Google Scholar 

  173. Erhan D, Bengio Y, Courville A, Vincent P. Visualizing higher-layer features of a deep network. University of Montreal; 2009 p. 1. Report No.: 1341(3).

    Google Scholar 

  174. Zilke JR, Loza Mencía E, Janssen F. DeepRED–Rule Extraction from Deep Neural Networks. In: International Conference on Discovery Science. Springer, Cham; 2016. p. 457–73.

    Google Scholar 

  175. Schmitz GP, Aldrich C, Gouws FS. ANN-DT: an algorithm for extraction of decision trees from artificial neural networks. IEEE Transactions on Neural Networks. 1999;10(6):1392–401.

    Article  Google Scholar 

  176. Shapley LS. A value of n-person games. Contributions to the Theory of Games. 1953;307–17.

    Google Scholar 

  177. Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. In: European Conference on Computer Vision. Springer, Cham; 2014. p. 818–33.

    Google Scholar 

  178. Goldstein A, Kapelner A, Bleich J, Pitkin E. Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation. Journal of Computational and Graphical Statistics. 2015;24(1):44–65.

    Article  MathSciNet  Google Scholar 

  179. Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. p. 2921–9.

    Book  Google Scholar 

  180. Ras, G., Xie, N., Van Gerven, M. and Doran, D., 2022. Explainable deep learning: A field guide for the uninitiated. Journal of Artificial Intelligence Research, 73, pp. 329–396.

    Google Scholar 

  181. Valdes G, Luna JM, Eaton E, Simone CB, Ungar LH, Solberg TD. MediBoost: a patient stratification tool for interpretable decision making in the era of precision medicine. Scientific Reports. 2016;6(1):1–8.

    Article  Google Scholar 

  182. Zhang Y, Laber EB, Davidian M, Tsiatis AA. Interpretable dynamic treatment regimes. Journal of the American Statistical Association. 2018;113(524):1541–9.

    Article  MathSciNet  Google Scholar 

  183. Liu Q, Xie L. TranSynergy: Mechanism-driven interpretable deep neural network for the synergistic prediction and pathway deconvolution of drug combinations. PLoS Computational Biology. 2021;17(2).

    Google Scholar 

  184. Bastani H. Predicting with proxies: Transfer learning in high dimension. 2018 Dec 28;

    Google Scholar 

  185. Konrad R, Zhang W, Bjarndóttir M, Proaño R. Key considerations when using health insurance claims data in advanced data analyses: An experience report. Health Systems. 2019;9(4):317–25.

    Article  Google Scholar 

  186. Bjarnadóttir MV, Anderson D. Machine Learning in Healthcare: Fairness, Issues, and Challenges. In: Pushing the Boundaries: Frontiers in Impactful OR/OM Research [Internet]. INFORMS; 2020 [cited 2023 Nov 15]. p. 64–83. (INFORMS TutORials in Operations Research). Available from: https://pubsonline.informs.org/doi/abs/10.1287/educ.2020.0220

  187. Baneshi MR, Talei AR. Multiple imputation in survival models: applied on breast cancer data. Iranian Red Crescent Medical Journal. 2011;13(8):544.

    Google Scholar 

  188. Cai T, Cai TT, Zhang A. Structured matrix completion with applications to genomic data integration. Journal of the American Statistical Association. 2016;111(514):621–33.

    Article  MathSciNet  Google Scholar 

  189. Vilardell M, Buxó M, Clèries R, Martínez JM, Garcia G, Ameijide A, et al. Missing data imputation and synthetic data simulation through modeling graphical probabilistic dependencies between variables (ModGraProDep): An application to breast cancer survival. Artificial Intelligence in Medicine. 2020;107:101875.

    Article  Google Scholar 

  190. Wu X, Khorshidi HA, Aickelin U, Edib Z, Peate M. Imputation techniques on missing values in breast cancer treatment and fertility data. Health Information Science and Systems. 2019;7(1):1–8.

    Article  Google Scholar 

  191. Yin H, Dong H. The problem of noise in classification: Past, current and future work. In: 2011 IEEE 3rd International Conference on Communication Software and Networks. IEEE; 2011. p. 412–6.

    Google Scholar 

  192. Frénay B, Verleysen M. Classification in the presence of label noise: a survey. IEEE Transactions on Neural Networks and Learning Systems. 2013;25(5):845–69.

    Article  Google Scholar 

  193. Verbaeten S, Van Assche A. Ensemble methods for noise elimination in classification problems. International Workshop on Multiple Classifier Systems. 2003 Jun;317–25.

    Google Scholar 

  194. Guan D, Yuan W, Lee YK, Lee S. Identifying mislabeled training data with the aid of unlabeled data. Applied Intelligence. 2011;35(3):345–58.

    Article  Google Scholar 

  195. Sun JW, Zhao FY, Wang CJ, Chen SF. Identifying and correcting mislabeled training instances. In: Future Generation Communication and Networking (FGCN 2007). 2007. p. 244–50.

    Google Scholar 

  196. Lin CF, Wang SD. Fuzzy support vector machines. IEEE Transactions on Neural Networks. 2002;13(2):464–71.

    Article  Google Scholar 

  197. Bertsimas D, Dunn J, Pawlowski C, Zhuo YD. Robust Classification. INFORMS Journal on Optimization. 2019 Jan;1(1):2–34.

    Google Scholar 

  198. Şeref O, Razzaghi T, Xanthopoulos P. Weighted relaxed support vector machines. Annals of Operations Research. 2017;249(1–2):235–71.

    Article  MathSciNet  Google Scholar 

  199. Lyu Q, Guo M, Pei Z. DeGAN: Mixed noise removal via generative adversarial networks. Applied Soft Computing. 2020;95:106478.

    Article  Google Scholar 

  200. He H, Garcia EA. Learning from imbalanced data. IEEE Transactions on knowledge and data engineering. 2009;21(9):1263–84.

    Article  Google Scholar 

  201. Krawczyk B. Learning from imbalanced data: open challenges and future directions. Progress in Artificial Intelligence. 2016;5(4):221–32.

    Article  Google Scholar 

  202. López V, Fernández A, García S, Palade V, Herrera F. An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Information Sciences. 2013;250:113–41.

    Article  Google Scholar 

  203. Johnson JM, Khoshgoftaar TM. Survey on deep learning with class imbalance. Journal of Big Data. 2019;6(1):1–54.

    Article  Google Scholar 

  204. Xia C, Li X, Wang X, Kong B, Chen Y, Yin Y, et al. A multi-modality network for cardiomyopathy death risk prediction with CMR images and clinical information. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham; 2019. p. 577–85.

    Google Scholar 

  205. Lai YH, Chen WN, Hsu TC, Lin C, Tsao Y, Wu S. Overall survival prediction of non-small cell lung cancer by integrating microarray and clinical data with deep learning. Scientific Reports. 2020;10(1):1–11.

    Article  Google Scholar 

  206. Zhang J, Chen L. Clustering-based undersampling with random oversampling examples and support vector machine for imbalanced classification of breast cancer diagnosis. Computer Assisted Surgery. 2019;24(sup2):62–72.

    Article  Google Scholar 

  207. Rani KU, Ramadevi GN, Lavanya D. Performance of synthetic minority oversampling technique on imbalanced breast cancer data. In: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom). IEEE; 2016. p. 1623–7.

    Google Scholar 

  208. Zhang J, Chen L, Tian JX, Abid F, Yang W, Tang XF. Breast Cancer Diagnosis Using Cluster-based Undersampling and Boosted C5.0 Algorithm. International Journal of Control, Automation and Systems. 2021;19(5):1998–2008.

    Article  Google Scholar 

  209. Xu X, Wang C, Guo J, Gan Y, Wang J, Bai H, et al. MSCS-DeepLN: Evaluating lung nodule malignancy using multi-scale cost-sensitive neural networks. Medical Image Analysis. 2020;65:101772.

    Article  Google Scholar 

  210. Cao P, Ren F, Wan C, Yang J, Zaiane O. Efficient multi-kernel multi-instance learning using weakly supervised and imbalanced data for diabetic retinopathy diagnosis. Computerized Medical Imaging and Graphics. 2018;69:112–24.

    Article  Google Scholar 

  211. Ren F, Cao P, Li W, Zhao D, Zaiane O. Ensemble based adaptive over-sampling method for imbalanced data learning in computer aided detection of microaneurysm. In: Computerized Medical Imaging and Graphics. 2017. p. 54–67.

    Google Scholar 

  212. Taleb C, Khachab M, Mokbel C, Likforman-Sulem L. A reliable method to predict Parkinson’s disease stage and progression based on handwriting and re-sampling approaches. In: 2018 IEEE 2nd International Workshop on Arabic and Derived Script Analysis and Recognition (ASAR). IEEE; 2018. p. 7–12.

    Google Scholar 

  213. Xie N, Ras G, van Gerven M, Doran D. Effect of machine learning re-sampling techniques for imbalanced datasets in 18 F-FDG PET-based radiomics model on prognostication performance in cohorts of head and neck cancer patients. European Journal of Nuclear Medicine and Molecular Imaging. 2020;47(12):2826–35.

    Article  Google Scholar 

  214. Polat K. A hybrid approach to Parkinson disease classification using speech signal: The combination of SMOTE and random forests. In: 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT). IEEE; 2019. p. 1–3.

    Google Scholar 

  215. Wang P, Li Y, Reddy CK. Machine Learning for Survival Analysis: A Survey. ACM Comput Surv. 2019 Nov 30;51(6):1–36.

    Google Scholar 

  216. Wang KJ, Makond B, Wang KM. An improved survivability prognosis of breast cancer by using sampling and feature selection technique to solve imbalanced patient classification data. BMC Medical Informatics and Decision Making. 2013;13(1):1–14.

    Article  Google Scholar 

  217. Razzaghi T, Safro I, Ewing J, Sadrfaridpour E, Scott JD. Predictive models for bariatric surgery risks with imbalanced medical datasets. Annals of Operations Research. 2019;280(1):1–18.

    Article  MathSciNet  Google Scholar 

  218. Gao T, Hao Y, Zhang H, Hu L, Li H, Li H, et al. Predicting pathological response to neoadjuvant chemotherapy in breast cancer patients based on imbalanced clinical data. Personal and Ubiquitous Computing. 2018;22(5):1039–47.

    Article  Google Scholar 

  219. Peng J, Zhu J, Bergamaschi A, Han W, Noh DY, Pollack JR, et al. Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer. The Annals of Applied Statistics. 2010;4(1):53.

    Article  MathSciNet  Google Scholar 

  220. Richter AN, Khoshgoftaar TM. Efficient learning from big data for cancer risk modeling: a case study with melanoma. Computers in Biology and Medicine. 2019;110:29–39.

    Article  Google Scholar 

  221. Richter AN, Khoshgoftaar TM. Melanoma risk modeling from limited positive samples. Network Modeling Analysis in Health Informatics and Bioinformatics. 2019;8(1):1–9.

    Article  Google Scholar 

  222. Ghosh P, Azam S, Jonkman M, Karim A, Shamrat FJM, Ignatious E, et al. Efficient Prediction of Cardiovascular Disease Using Machine Learning Algorithms With Relief and LASSO Feature Selection Techniques. IEEE Access. 2021;9:19304–26.

    Article  Google Scholar 

  223. Kim SM, Kim Y, Jeong K, Jeong H, Kim J. Logistic LASSO regression for the diagnosis of breast cancer using clinical demographic data and the BI-RADS lexicon for ultrasonography. Ultrasonography. 2018;37(1):36.

    Article  Google Scholar 

  224. Huang X, Cai W, Yuan W, Peng S. Identification of key lncRNAs as prognostic prediction models for colorectal cancer based on LASSO. International Journal of Clinical and Experimental Pathology. 2020;13(4):675.

    Google Scholar 

  225. Kidd AC, McGettrick M, Tsim S, Halligan DL, Bylesjo M, Blyth KG. Survival prediction in mesothelioma using a scalable Lasso regression model: instructions for use and initial performance using clinical predictors. BMJ Open Respiratory Research. 2018;5(1).

    Google Scholar 

  226. Xu L, Wu Y, Che X, Zhao J, Wang F, Wang P, et al. Cox-LASSO analysis reveals a Ten-lncRNA signature to predict outcomes in patients with high-grade serous ovarian cancer. DNA and Cell Biology. 2019;38(12):1519–28.

    Article  Google Scholar 

  227. Park H, Imoto S, Miyano S. Recursive random lasso (RRLasso) for identifying anti-cancer drug targets. PLoS One. 2015;10(11).

    Google Scholar 

  228. Bhatt U, Andrus M, Weller A, Xiang A. Machine Learning Explainability for External Stakeholders [Internet]. arXiv; 2020 [cited 2023 Nov 15]. Available from: http://arxiv.org/abs/2007.05408

  229. Food US, Administration D. Artificial Intelligence and Machine Learning in Software as a Medical Device [Internet]. 2021. Available from: https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device

  230. Grieves M. Digital Twin: Manufacturing Excellence Through Virtual Factory Replication [Digital Twin White Paper]. Research.fit.edu; 2015 Dec.

    Google Scholar 

  231. Grieves M, Vickers J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. In: Transdisciplinary Perspectives on Complex Systems. Springer; 2017. p. 85–113.

    Chapter  Google Scholar 

  232. Barricelli BR, Casiraghi E, Gliozzo J, Petrini A, Valtolina S. Human digital twin for fitness management. IEEE Access. 2020;8:26637–64.

    Article  Google Scholar 

  233. Vachàlek J, Bartalsky L, Rovny O, Sìsmìsovà D, Morhàç M, Loksk M. The digital twin of an industrial production line within the Industry 4.0 concept. In: 2017 21st International Conference on Process Control (PC). IEEE; 2017. p. 258–62.

    Google Scholar 

  234. Ramkumar PN, Haeberle HS, Ramanathan D, Cantrell WA, Navarro SM, Mont MA, et al. Remote patient monitoring using mobile health for total knee arthroplasty: validation of a wearable and machine learning–based surveillance platform. The Journal of Arthroplasty. 2019;34(10):2253–9.

    Article  Google Scholar 

  235. Chen IY, Joshi S, Ghassemi M. Treating health disparities with artificial intelligence. Nat Med. 2020 Jan;26(1):16–7.

    Google Scholar 

  236. Chen IY, Szolovits P, Ghassemi M. Can AI Help Reduce Disparities in General Medical and Mental Health Care? AMA Journal of Ethics. 2019 Feb 1;21(2):167–79.

    Google Scholar 

  237. Suriyakumar VM, Papernot N, Goldenberg A, Ghassemi M. Chasing Your Long Tails: Differentially Private Prediction in Health Care Settings. In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency. 2021. p. 723–34.

    Google Scholar 

  238. Nakamoto S. Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review. 2008.

    Google Scholar 

  239. Hasselgren A, Kralevska K, Gligoroski D, Pedersen SA, Faxvaag A. Blockchain in healthcare and health sciences—A scoping review. International Journal of Medical Informatics. 2020;134:104040.

    Article  Google Scholar 

  240. Attaran M. Blockchain technology in healthcare: Challenges and opportunities. International Journal of Healthcare Management. 2020 Nov 8;

    Google Scholar 

  241. Zhang P, White J, Schmidt DC, Lenz G, Rosenbloom ST. FHIRChain: applying blockchain to securely and scalably share clinical data. Computational and Structural Biotechnology Journal. 2018;16:267–78.

    Article  Google Scholar 

  242. Jiang S, Cao J, Wu H, Yang Y, Ma M, He J. Blochie: a blockchain-based platform for healthcare information exchange. In: 2018 IEEE International Conference on Smart Computing (SmartComp). 2018. p. 49–56.

    Google Scholar 

  243. Kleinaki AS, Mytis-Gkometh P, Drosatos G, Efraimidis PS, Kaldoudi E. A blockchain-based notarization service for biomedical knowledge retrieval. Computational and Structural Biotechnology Journal. 2018;16:288–97.

    Article  Google Scholar 

  244. Patel V. A framework for secure and decentralized sharing of medical imaging data via blockchain consensus. Health Informatics Journal. 2019;25(4):1398–411.

    Article  Google Scholar 

  245. Pacal I, Karaboga D, Basturk A, Akay B, Nalbantoglu U. A comprehensive review of deep learning in colon cancer. Computers in Biology and Medicine. 2020;104003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talayeh Razzaghi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bennett, R., Hemmati, M., Ramesh, R., Razzaghi, T. (2024). Artificial Intelligence and Machine Learning in Precision Health: An Overview of Methods, Challenges, and Future Directions. In: Kotsireas, I.S., Nagurney, A., Pardalos, P.M., Pickl, S.W., Vogiatzis, C. (eds) Dynamics of Disasters. Springer Optimization and Its Applications, vol 217. Springer, Cham. https://doi.org/10.1007/978-3-031-74006-0_2

Download citation

Publish with us

Policies and ethics