Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Learning Impartial Policies for Sequential Counterfactual Explanations Using Deep Reinforcement Learning

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2023)

Abstract

In the field of explainable Artificial Intelligence (XAI), sequential counterfactual (SCF) examples are often used to alter the decision of a trained classifier by implementing a sequence of modifications to the input instance. Although certain test-time algorithms aim to optimize for each new instance individually, recently Reinforcement Learning (RL) methods have been proposed that seek to learn policies for discovering SCFs, thereby enhancing scalability. As is typical in RL, the formulation of the RL problem, including the specification of state space, actions, and rewards, can often be ambiguous. In this work, we identify shortcomings in existing methods that can result in policies with undesired properties, such as a bias towards specific actions. We propose to use the output probabilities of the classifier to create a more informative reward, to mitigate this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brughmans, D., Leyman, P., Martens, D.: Nice: an algorithm for nearest instance counterfactual explanations. Data Mining Knowl. Discov. 1–39 (2023)

    Google Scholar 

  2. Cai, Y., Zimek, A., Ntoutsi, E.: Xproax-local explanations for text classification with progressive neighborhood approximation. In: 2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–10. IEEE (2021)

    Google Scholar 

  3. Chen, Z., Silvestri, F., Wang, J., Zhu, H., Ahn, H., Tolomei, G.: Relax: reinforcement learning agent explainer for arbitrary predictive models. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 252–261 (2022)

    Google Scholar 

  4. Dandl, S., Molnar, C., Binder, M., Bischl, B.: Multi-objective counterfactual explanations. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12269, pp. 448–469. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58112-1_31

    Chapter  Google Scholar 

  5. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. (CSUR) 51(5), 1–42 (2018)

    Article  MATH  Google Scholar 

  6. Keane, M.T., Smyth, B.: Good counterfactuals and where to find them: a case-based technique for generating counterfactuals for explainable AI (XAI). In: Watson, I., Weber, R. (eds.) ICCBR 2020. LNCS (LNAI), vol. 12311, pp. 163–178. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58342-2_11

    Chapter  MATH  Google Scholar 

  7. Kelly, M., Longjohn, R., Nottingham, K.: The UCI machine learning repository (2023). https://archive.ics.uci.edu

  8. Kommiya Mothilal, R., Mahajan, D., Tan, C., Sharma, A.: Towards unifying feature attribution and counterfactual explanations: different means to the same end. In: Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, pp. 652–663 (2021)

    Google Scholar 

  9. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015)

  10. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  11. Mahajan, D., Tan, C., Sharma, A.: Preserving causal constraints in counterfactual explanations for machine learning classifiers. arXiv preprint arXiv:1912.03277 (2019)

  12. Naumann, P., Ntoutsi, E.: Consequence-aware sequential counterfactual generation. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds.) ECML PKDD 2021. LNCS (LNAI), vol. 12976, pp. 682–698. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86520-7_42

    Chapter  MATH  Google Scholar 

  13. Pawelczyk, M., Broelemann, K., Kasneci, G.: Learning model-agnostic counterfactual explanations for tabular data. In: Proceedings of the Web Conference 2020, pp. 3126–3132 (2020)

    Google Scholar 

  14. Ramakrishnan, G., Lee, Y.C., Albarghouthi, A.: Synthesizing action sequences for modifying model decisions. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5462–5469 (2020)

    Google Scholar 

  15. Tsirtsis, S., De, A., Rodriguez, M.: Counterfactual explanations in sequential decision making under uncertainty. Adv. Neural. Inf. Process. Syst. 34, 30127–30139 (2021)

    Google Scholar 

  16. Verma, S., Hines, K.E., Dickerson, J.P.: Amortized generation of sequential algorithmic recourses for black-box models. In: AAAI Conference on Artificial Intelligence (2021)

    Google Scholar 

  17. Xiong, J., et al.: Parametrized deep q-networks learning: reinforcement learning with discrete-continuous hybrid action space. arXiv preprint arXiv:1810.06394 (2018)

Download references

Acknowledgements

Our work is Funded by the Deutsche Forschungsgemeinsschaft (DFG, German Research Foundation) - SFB1463 - 434502799. I further acknowledge the support by the European Union, Horizon Europe project MAMMOth under contract number 101070285.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanouil Panagiotou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Panagiotou, E., Ntoutsi, E. (2025). Learning Impartial Policies for Sequential Counterfactual Explanations Using Deep Reinforcement Learning. In: Meo, R., Silvestri, F. (eds) Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2023. Communications in Computer and Information Science, vol 2133. Springer, Cham. https://doi.org/10.1007/978-3-031-74630-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-74630-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-74629-1

  • Online ISBN: 978-3-031-74630-7

  • eBook Packages: Artificial Intelligence (R0)

Publish with us

Policies and ethics