Abstract
The integration of Renewable Energy Resources into the existing electricity grid to reduce Greenhouse Gas emissions raises several challenges, such as volatile generation. Optimized scheduling of Distributed Energy Resources (DERs) within the Energy Hub concept can address these challenges by increasing the flexibility in the grid. However, this scheduling task can be categorized as an NP-hard optimization problem and requires the use of powerful heuristic algorithms to solve it. One such heuristic approach is an Evolutionary Algorithm (EA), however, EAs solution quality may be poor w.r.t. solution time when considering complex scheduling tasks of DERs. In our work, we improve the applied EA optimization by considering the predicted optimization quality. More specifically, we use Machine Learning (ML) algorithms trained on previous solutions to forecast the optimization quality. Based on these predictions, the computational effort of the EA is directed to particularly difficult areas of the search space. We direct the effort of the EA by dynamic interval length assignment during the phenotype mapping of the solutions proposed by the EA. We evaluate our approach by comparing multiple ML forecast algorithms and show that our approach leads to a significant increase of the evaluated degree of fulfillment by up to 4.4%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmed, A., Khalid, M.: A review on the selected applications of forecasting models in renewable power systems. Renew. Sustain. Energy Rev. 100, 9–21 (2019)
Appino, R.R., González-Ordiano, J.Á., Mikut, R., Faulwasser, T., Hagenmeyer, V.: On the use of probabilistic forecasts in scheduling of renewable energy sources coupled to storages. Appl. Energy 210, 1207–1218 (2018)
Bao, Z., Zhou, Q., Yang, Z., Yang, Q., Xu, L., Wu, T.: A multi time-scale and multi energy-type coordinated microgrid scheduling solution-part i: model and methodology. IEEE Trans. Power Syst. 30(5), 2257–2266 (2015). https://doi.org/10.1109/TPWRS.2014.2367127
Beiter, J.: PyTorch forecasting documentation (2020). https://pytorch-forecasting.readthedocs.io/en/stable/, Accessed 07 Nov 2023
Bentley, P.J., Lim, S.L., Gaier, A., Tran, L.: Coil: constrained optimization in learned latent space–learning representations for valid solutions. arXiv preprint arXiv:2202.02163 (2022)
Bentley, P.J., Lim, S.L., Gaier, A., Tran, L.: Evolving through the looking glass: learning improved search spaces with variational autoencoders. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds.) Parallel Problem Solving from Nature - PPSN XVII, PPSN 2022, LNCS, vol. 13398, pp. 371–384. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14714-2_26
Bishop, C.M., Nasrabadi, N.M.: Pattern recognition and machine learning, vol. 4. Springer, New York (2006)
Blume, C., Jakob, W.: GLEAM - an evolutionary algorithm for planning and control based on evolution strategy. In: Cantú-Paz, E. (ed.) Late Breaking papers at the Genetic and Evolutionary Computation Conference (GECCO-2002), New York, USA, 9-13 July 2002, pp. 31–38. AAAI (2002)
Blume, C., Jakob, W.: GLEAM - general learning evolutionary algorithm and method: EIN evolutionärer Algorithmus und seine Anwendungen. Technical Report, Karlsruhe Institute for Technology (KIT) (2009). https://doi.org/10.5445/KSP/1000013553
Brucker, P.: Computational Complexity, pp. 37–60. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-69516-5_3
Cantú-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Springer US, Boston, MA (2001). https://doi.org/10.1007/978-1-4615-4369-5
Challu, C., Olivares, K.G., Oreshkin, B.N., Garza, F., Mergenthaler, M., Dubrawski, A.: N-hits: neural hierarchical interpolation for time series forecasting. arXiv preprint arXiv:2201.12886 (2022)
Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, pp. 785–794. ACM, New York, NY, USA (2016). https://doi.org/10.1145/2939672.2939785
Cheng, S., Wang, R., Xu, J., Wei, Z.: Multi-time scale coordinated optimization of an energy hub in the integrated energy system with multi-type energy storage systems. Sustain. Energy Technol. Assess. 47, 101327 (2021). https://doi.org/10.1016/j.seta.2021.101327
D’Agostino, R., Pearson, E.S.: Tests for departure from normality. empirical results for the distributions of \(b2\) and \(\sqrt b1\). Biometrika 60(3), 613–622 (1973). http://www.jstor.org/stable/2335012
Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186(2–4), 311–338 (2000)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Ding, T., Jia, W., Shahidehpour, M., Han, O., Sun, Y., Zhang, Z.: Review of optimization methods for energy hub planning, operation, trading, and control. IEEE Trans. Sustain. Energy 13(3), 1802–1818 (2022). https://doi.org/10.1109/TSTE.2022.3172004
Distributed (Deep) Machine Learning Community: XGBoost Documentation (2022). https://xgboost.readthedocs.io/en/stable/, Accessed 07 Nov 2023
Efron, B., Hastie, T.: Computer Age Statistical Inference: Algorithms, Evidence, and Data Science. Institute of Mathematical Statistics Monographs, Cambridge University Press (2016). https://doi.org/10.1017/CBO9781316576533
Elmachtoub, A.N., Liang, J.C.N., McNellis, R.: Decision trees for decision-making under the predict-then-optimize framework. In: International Conference on Machine Learning, pp. 2858–2867. PMLR (2020)
Geidl, M.: Integrated modeling and optimization of multi-carrier energy systems. Ph.D. thesis, ETH Zürich (2007). https://doi.org/10.3929/ethz-a-005377890
Geidl, M., Andersson, G.: A modeling and optimization approach for multiple energy carrier power flow. In: 2005 IEEE Russia Power Tech, pp. 1–7 (2005). https://doi.org/10.1109/PTC.2005.4524640
Geidl, M., Andersson, G.: Optimal power flow of multiple energy carriers. IEEE Trans. Power Syst. 22(1), 145–155 (2007). https://doi.org/10.1109/TPWRS.2006.888988
Geidl, M., Koeppel, G., Favre-Perrod, P., Klockl, B., Andersson, G., Frohlich, K.: Energy hubs for the future. IEEE Power Energ. Mag. 5(1), 24–30 (2007). https://doi.org/10.1109/MPAE.2007.264850
González-Ordiano, J.Á., et al.: Probabilistic forecasts of the distribution grid state using data-driven forecasts and probabilistic power flow. Appl. Energy 302, 117498 (2021). https://doi.org/10.1016/j.apenergy.2021.117498
Gorges-Schleuter, M.: Explicit parallelism of genetic algorithms through population structures. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 150–159. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0029746
Gorges-Schleuter, M.: A comparative study of global and local selection in evolution strategies. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 367–377. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056879
Heidrich, B., et al.: pyWATTS: python workflow automation tool for time series. ArXiv abs/2106.10157 (2021)
Jakob, W., Ordiano, J.A.G., Ludwig, N., Mikut, R., Hagenmeyer, V.: Towards coding strategies for forecasting-based scheduling in smart grids and the Energy Lab 2.0. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2017, pp. 1271–1278. Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3067695.3082481
Jakob, W., Quinte, A., Stucky, K.-U., Süß, W.: Fast multi-objective scheduling of jobs to constrained resources using a hybrid evolutionary algorithm. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 1031–1040. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4_102
Jakob, W., Strack, S., Quinte, A., Bengel, G., Stucky, K.U., Süß, W.: Fast rescheduling of multiple workflows to constrained heterogeneous resources using multi-criteria memetic computing. Algorithms 6(2), 245–277 (2013). https://doi.org/10.3390/a6020245
Khalloof, H., et al.: A generic distributed microservices and container based framework for metaheuristic optimization. In: Proceedings of the Genetic and Evolutionary Conference Companion, Kyoto, J, 15-19 July 2018, pp. 1363–1370. Association for Computing Machinery (ACM) (2018). https://doi.org/10.1145/3205651.3208253
Khalloof, H., Jakob, W., Shahoud, S., Duepmeier, C., Hagenmeyer, V.: A generic scalable method for scheduling distributed energy resources using parallelized population-based metaheuristics. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) FTC 2020. AISC, vol. 1289, pp. 1–21. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-63089-8_1
Kurita, A., et al.: Multiple time-scale power system dynamic simulation. IEEE Trans. Power Syst. 8(1), 216–223 (1993). https://doi.org/10.1109/59.221237
Le, K.D., Day, J.T.: Rolling horizon method: a new optimization technique for generation expansion studies. IEEE Trans. Power Apparatus Syst. PAS-101(9), 3112–3116 (1982). https://doi.org/10.1109/TPAS.1982.317523
Li, C., et al.: A time-scale adaptive dispatch method for renewable energy power supply systems on islands. IEEE Trans. Smart Grid 7(2), 1069–1078 (2016). https://doi.org/10.1109/TSG.2015.2485664
Lim, B., Arık, S.Ö., Loeff, N., Pfister, T.: Temporal fusion transformers for interpretable multi-horizon time series forecasting. Int. J. Forecast. 37(4), 1748–1764 (2021)
Lösch, M.: Utilization of electric prosumer flexibility incentivized by spot and balancing markets. Ph.D. thesis, Karlsruhe Institute of Technology (KIT) (2022). https://doi.org/10.5445/IR/1000152126
Mehdi, R.A.: Scheduling deferrable appliances and energy resources of a smart home applying multi-time scale stochastic model predictive control. Sustain. Urban Areas 32, 338–347 (2017). https://doi.org/10.1016/j.scs.2017.04.006
Nemati, M., Braun, M., Tenbohlen, S.: Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming. Appl. Energy 210, 944–963 (2018). https://doi.org/10.1016/j.apenergy.2017.07.007
Pedregosa, F., et al.: Scikit-learn: Mach. Learn. Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Petropoulos, F., et al.: Forecasting: theory and practice. Int. J. Forecast. 38(3), 705–871 (2022). https://doi.org/10.1016/j.ijforecast.2021.11.001
Poppenborg, R., Beisswanger, K., Hotz, C., Förderer, K., Kolb, T., Hagenmeyer, V.: Dynamic mapping for evolutionary algorithm based optimization of energy hub gas scheduling. In: 2023 IEEE 11th International Conference on Smart Energy Grid Engineering (SEGE). pp. 206–211 (2023). https://doi.org/10.1109/SEGE59172.2023.10274571
Poppenborg, R., et al.: Energy hub gas: a modular setup for the evaluation of local flexibility and renewable energy carriers provision. In: 2022 IEEE 10th International Conference on Smart Energy Grid Engineering (SEGE), pp. 33–41 (2022). https://doi.org/10.1109/SEGE55279.2022.9889751
Poppenborg, R., Khalloof, H., Chlosta, M., Hofferberth, T., Düpmeier, C., Hagenmeyer, V.: Dynamic optimization of energy hubs with evolutionary algorithms using adaptive time segments and varying resolution. In: Yin, H., Camacho, D., Tino, P. (eds.) Intelligent Data Engineering and Automated Learning - IDEAL 2022, IDEAL 2022, LNCS, vol. 13756, pp 513–524. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21753-1_50
Poppenborg, R., Phipps, K., Khalloof, H., Förderer, K., Mikut, R., Hagenmeyer, V.: Dynamic chromosome interpretation in evolutionary algorithms for distributed energy resources scheduling. In: Proceedings of the Companion Conference on Genetic and Evolutionary Computation, GECCO 2023, pp. 755-758. Companion, Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3583133.3590666
Poppenborg, R., et al.: Energy hub gas: a multi-domain system modelling and co-simulation approach. In: 2021 9th Workshop on Modelling and Simulation of Cyber-Physical Energy Systems (MSCPES), pp. 67–72 (2021). https://doi.org/10.1145/3470481.3472712
Qiu, H., Gu, W., Xu, Y., Zhao, B.: Multi-time-scale rolling optimal dispatch for ac/dc hybrid microgrids with day-ahead distributionally robust scheduling. IEEE Trans. Sustain. Energy 10(4), 1653–1663 (2019). https://doi.org/10.1109/TSTE.2018.2868548
Sayedin, F., Maroufmashat, A., Al-Adwani, S., Khavas, S.S., Elkamel, A., Fowler, M.: Evolutionary optimization approaches for direct coupling photovoltaic-electrolyzer systems. In: 2015 International Conference on Industrial Engineering and Operations Management (IEOM). pp. 1–8 (2015). https://doi.org/10.1109/IEOM.2015.7093884
Schäfer, P., Mitsos, A.: Tailored time grids for nonlinear scheduling subject to time-variable electricity prices by wavelet-based analysis. In: Pierucci, S., Manenti, F., Bozzano, G.L., Manca, D. (eds.) 30th European Symposium on Computer Aided Process Engineering, Computer Aided Chemical Engineering, vol. 48, pp. 1123–1128. Elsevier (2020). https://doi.org/10.1016/B978-0-12-823377-1.50188-9, https://www.sciencedirect.com/science/article/pii/B9780128233771501889
Schäfer, P., Schweidtmann, A.M., Lenz, P.H.A., Markgraf, H.M.C., Mitsos, A.: Wavelet-based grid-adaptation for nonlinear scheduling subject to time-variable electricity prices. Comput. Chem. Eng. 132, 106598 (2020). https://doi.org/10.1016/j.compchemeng.2019.106598, https://juser.fz-juelich.de/record/877550
Son, Y.G., Oh, B.C., Acquah, M.A., Fan, R., Kim, D.M., Kim, S.Y.: Multi energy system with an associated energy hub: a review. IEEE Access 9, 127753–127766 (2021). https://doi.org/10.1109/ACCESS.2021.3108142
Svetnik, V., Liaw, A., Tong, C., Culberson, J.C., Sheridan, R.P., Feuston, B.P.: Random forest: a classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 43(6), 1947–1958 (2003)
Tang, Z., Fishwick, P.A.: Feedforward neural nets as models for time series forecasting. ORSA J. Comput. 5(4), 374–385 (1993)
Tseng, C.L.: On Power System Generation Unit Commitment Problems. University of California, Berkeley (1996)
Xia, S., Ding, Z., Du, T., Zhang, D., Shahidehpour, M., Ding, T.: Multitime scale coordinated scheduling for the combined system of wind power, photovoltaic, thermal generator, hydro pumped storage, and batteries. IEEE Trans. Ind. Appl. 56(3), 2227–2237 (2020). https://doi.org/10.1109/TIA.2020.2974426
Yang, H., Li, M., Jiang, Z., Zhang, P.: Multi-time scale optimal scheduling of regional integrated energy systems considering integrated demand response. IEEE Access 8, 5080–5090 (2020). https://doi.org/10.1109/ACCESS.2019.2963463
Yi, Z., Xu, Y., Gu, W., Wu, W.: A multi-time-scale economic scheduling strategy for virtual power plant based on deferrable loads aggregation and disaggregation. IEEE Trans. Sustain. Energy 11(3), 1332–1346 (2020). https://doi.org/10.1109/TSTE.2019.2924936
Zafar, R., Ravishankar, J., Fletcher, J.E., Pota, H.R.: Multi-timescale model predictive control of battery energy storage system using conic relaxation in smart distribution grids. IEEE Trans. Power Syst. 33(6), 7152–7161 (2018). https://doi.org/10.1109/TPWRS.2018.2847400
Acknowledgments
The authors gratefully acknowledge funding by the German Federal Ministry of Education and Research (BMBF) within the Kopernikus Project ENSURE ‘New ENergy grid StructURes for the German Energiewende’, the Helmholtz Association’s Initiative and Networking Fund through Helmholtz AI, the Helmholtz Association under the Program “Energy System Design”, and the German Research Foundation (DFG) as part of the Research Training Group, 2153 “Energy Status Data: Informatics Methods for its Collection, Analysis and Exploitation”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Poppenborg, R., Phipps, K., Beichter, M., Förderer, K., Mikut, R., Hagenmeyer, V. (2025). Dynamic Phenotype Mapping in Evolutionary Algorithms for Energy Hub Scheduling. In: Jørgensen, B.N., Ma, Z.G., Wijaya, F.D., Irnawan, R., Sarjiya, S. (eds) Energy Informatics. EI.A 2024. Lecture Notes in Computer Science, vol 15272. Springer, Cham. https://doi.org/10.1007/978-3-031-74741-0_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-74741-0_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-74740-3
Online ISBN: 978-3-031-74741-0
eBook Packages: Computer ScienceComputer Science (R0)