Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Revisiting Path Contraction and Cycle Contraction

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14760))

Included in the following conference series:

  • 132 Accesses

Abstract

The Path Contraction and Cycle Contraction problems take as input an undirected graph G with n vertices, m edges and an integer k and determine whether one can obtain a path or a cycle, respectively, by performing at most k edge contractions in G. We revisit these NP-complete problems and prove the following results.

  • Path Contraction admits an \(\mathcal {O}^*(2^{k})\)-time algorithm. This improves over the current algorithm known for the problem [Algorithmica 2014].

  • Cycle Contraction admits an \(\mathcal {O}^*((2 + \epsilon _{\ell })^k)\)-time algorithm where \(0 < \epsilon _{\ell } \le 0.5509\) and \(\epsilon _{\ell }\) decreases as length of the resultant cycle \(\ell \) increases.

Central to these results is an algorithm for a general variant of Path Contraction, namely, Path Contraction With Constrained Ends. We also give an \(\mathcal {O}^*(2.5191^n)\)-time algorithm to solve the optimization version of Cycle Contraction.

Next, we turn our attention to restricted graph classes and show the following results.

  • Path Contraction on planar graphs admits a polynomial-time algorithm.

  • Path Contraction on chordal graphs does not admit an \(\mathcal {O}(n^{2-\epsilon } \cdot 2^{o(tw)})\)-time algorithm for any \(\epsilon > 0\), unless the Orthogonal Vectors Conjecture fails. Here, tw is the treewidth of the input graph.

The second result complements the \(\mathcal {O}(nm)\)-time, i.e., \(\mathcal {O}(n^2 \cdot tw)\)-time, algorithm known for the problem [Discret. Appl. Math. 2014].

R. Krithika—Supported by SERB MATRICS grant number MTR/2022/000306.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\mathcal {O}^*(.)\) suppresses polynomial factors.

  2. 2.

    The treewidth of a graph measures how close the graph is to a tree. See [5] for the definitions of tree decomposition and treewidth.

  3. 3.

    In Orthogonal Vectors, given two sets of n d-dimensional boolean vectors X and Y, the objective is to determine if there is a pair of vectors \(x \in X\) and \(y \in Y\) that are orthogonal. The problem can be solved in \(\ensuremath {\mathcal {O}}(n^2 d)\) time and the Orthogonal Vectors Conjecture [16] states that it cannot be solved in \(\ensuremath {\mathcal {O}}(n^{2-\epsilon })\) time for any \(\epsilon > 0\) when \(d=\mathcal {O}(\log n)\).

References

  1. Agrawal, A., Fomin, F.V., Lokshtanov, D., Saurabh, S., Tale, P.: Path contraction faster than 2\( ^{\text{ n }}\). SIAM J. Discret. Math. 34(2), 1302–1325 (2020). https://doi.org/10.1137/19M1259638

    Article  MathSciNet  MATH  Google Scholar 

  2. Asano, T., Hirata, T.: Edge-contraction problems. J. Comput. Syst. Sci. 26(2), 197–208 (1983). https://doi.org/10.1016/0022-0000(83)90012-0

    Article  MathSciNet  MATH  Google Scholar 

  3. Belmonte, R., Golovach, P.A., van ’t Hof, P., Paulusma, D.: Parameterized complexity of three edge contraction problems with degree constraints. Acta Informatica 51(7), 473–497 (2014). https://doi.org/10.1007/s00236-014-0204-z

  4. Brouwer, A.E., Veldman, H.J.: Contractibility and NP-completeness. J. Graph Theory 11(1), 71–79 (1987). https://doi.org/10.1002/jgt.3190110111

    Article  MathSciNet  MATH  Google Scholar 

  5. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  6. Diestel, R.: Graph Theory. Graduate texts in mathematics, vol. 173, 4th edn. Springer, Berlin (2012)

    MATH  Google Scholar 

  7. Fomin, F.V., Villanger, Y.: Treewidth computation and extremal combinatorics. Combinatorica 32(3), 289–308 (2012). https://doi.org/10.1007/S00493-012-2536-Z

    Article  MathSciNet  MATH  Google Scholar 

  8. Hammack, R.H.: Cyclicity of graphs. J. Graph Theory 32(2), 160–170 (1999). https://doi.org/10.1002/(SICI)1097-0118(199910)32:2<160::AID-JGT6>3.0.CO;2-U

    Article  MathSciNet  MATH  Google Scholar 

  9. Hammack, R.H.: A note on the complexity of computing cyclicity. Ars Comb. 63 (2002)

    Google Scholar 

  10. Heggernes, P., van ’t Hof, P., Lévêque, B., Lokshtanov, D., Paul, C.: Contracting graphs to paths and trees. Algorithmica 68(1), 109–132 (2014). https://doi.org/10.1007/s00453-012-9670-2

  11. Heggernes, P., van ’t Hof, P., Lévêque, B., Paul, C.: Contracting chordal graphs and bipartite graphs to paths and trees. Discret. Appl. Math. 164, 444–449 (2014). https://doi.org/10.1016/j.dam.2013.02.025

  12. van ’t Hof, P., Paulusma, D., Woeginger, G.J.: Partitioning graphs into connected parts. Theor. Comput. Sci. 410(47-49), 4834–4843 (2009). https://doi.org/10.1016/J.TCS.2009.06.028

  13. Li, W., Feng, Q., Chen, J., Hu, S.: Improved kernel results for some fpt problems based on simple observations. Theor. Comput. Sci. 657, 20–27 (2017). https://doi.org/10.1016/j.tcs.2016.06.012, https://www.sciencedirect.com/science/article/pii/S0304397516302481. frontiers of Algorithmics

  14. Saurabh, S., dos Santos Souza, U., Tale, P.: On the parameterized complexity of grid contraction. In: 17th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT. LIPIcs, vol. 162, pp. 1–17 (2020). https://doi.org/10.4230/LIPIcs.SWAT.2020.34

  15. Sheng, B., Sun, Y.: An improved linear kernel for the cycle contraction problem. Inf. Process. Lett. 149, 14–18 (2019). https://doi.org/10.1016/j.ipl.2019.05.003, https://www.sciencedirect.com/science/article/pii/S0020019019300912

  16. Williams, R., Yu, H.: Finding orthogonal vectors in discrete structures. In: Chekuri, C. (ed.) Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, 5-7 January 2014, pp. 1867–1877. SIAM (2014). https://doi.org/10.1137/1.9781611973402.135

Download references

Acknowledgement

We thank Roohani Sharma for initial discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Kutty Malu .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krithika, R., Malu, V.K.K., Tale, P. (2025). Revisiting Path Contraction and Cycle Contraction. In: Kráľ, D., Milanič, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2024. Lecture Notes in Computer Science, vol 14760. Springer, Cham. https://doi.org/10.1007/978-3-031-75409-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75409-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75408-1

  • Online ISBN: 978-3-031-75409-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics