Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Optimal Fuzzy-Genetic Self-tuning for Tracking Photovoltaic Peak Power

  • Conference paper
  • First Online:
Advances in Soft Computing (MICAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15247))

Included in the following conference series:

Abstract

This paper presents an innovative approach for maximum power point tracking (MPPT) in photovoltaic (PV) systems, employing an optimized self-organizing fuzzy tuning system enhanced by a genetic algorithm (GA). The method encodes essential parameters—such as scaling factors, membership function parameters, and controller policies—into bit-strings, which are processed by the GA to find near-optimal solutions. A specific fitness function is used to ensure superior dynamic performance. Experimental results confirm the effectiveness of this approach, demonstrating a significant reduction in the number of required parameters without sacrificing performance. Comparative analysis shows that this method outperforms other MPPT techniques, including GA and fuzzy logic controllers (FLC), achieving a notable tracking efficiency of 98.14% within 4 s. This efficiency surpasses other methods, which have lower efficiencies and longer convergence times. Across various irradiance levels (0.3 kW/m2 to 0.9 kW/m2), the proposed approach consistently achieves the highest tracking efficiency (98.32% to 98.14%), underscoring its potential as an optimal solution for PV system optimization. This study introduces a novel optimization technique for PV systems and provides empirical evidence of its robust performance under diverse environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdelsalam, A.K., Massoud, A.M., Ahmed, S., Enjeti, P.N.: High-performance adaptive perturb and observe MPPT technique for photovoltaic-based microgrids. IEEE Trans. Power Electron. 26(4), 1010–1021 (2011). https://doi.org/10.1109/TPEL.2011.2106221

    Article  Google Scholar 

  2. Asnil, A., Krimadinata, K., Astrid, E., Husnaini, I.: Enhanced incremental Conductance maximum power point tracking algorithm for photovoltaic system in variable conditions. J. Eur. des Syst. Autom. 57(1), 33–43 (2024). https://doi.org/10.18280/jesa.570104

    Article  Google Scholar 

  3. Nunes, H.G.G., Morais, F.A.L., Pombo, J.A.N., Mariano, S.J.P.S., Calado, M.R.A.: Bypass diode effect and photovoltaic parameter estimation under partial shading using a hill climbing neural network algorithm. Front. Energy Res. (2022). https://doi.org/10.3389/fenrg.2022.837540

    Article  Google Scholar 

  4. Salem, A.A., Ismail, M.M., Zedan, H.A., Elnaghi, B.E.: Design of a perturb and observe and neural network algorithms-based maximum power point tracking for a grid-connected photovoltaic system. Int. J. Electr. Comput. Eng. 14(4), 3674–3687 (2024). https://doi.org/10.11591/ijece.v14i4.pp3674-3687

    Article  Google Scholar 

  5. Jafar, M.I.A., Zakaria, M.I., Dahlan, N.Y., Kamarudin, M.N., El Fezazi, N.: Enhancing photovoltaic system maximum power point tracking with fuzzy logic-based perturb and observe method. Int. J. Electr. Comput. Eng. 14(3), 2386–2399 (2024). https://doi.org/10.11591/ijece.v14i3.pp2386-2399

    Article  Google Scholar 

  6. Lüy, M., Metin, N.A., Civelek, Z.: Maximum power point tracking with incremental conductance and fuzzy logic controller in solar energy systems. El-Cezeri J. Sci. Eng. 11(1), 120–130 (2024). https://doi.org/10.31202/ecjse.1310705

    Article  Google Scholar 

  7. Douiri, M.R., Nasser, T., Essadki, A., Cherkaoui, M.: Direct torque control of induction motor based on artificial neural networks with estimate and regulation speed using the MRAS and neural PI controller. J. Theor. Appl. Inf. Technol. 20(1), 15–21 (2010)

    Google Scholar 

  8. Ncir, N., El Akchioui, N.: An advanced intelligent MPPT control strategy based on the imperialist competitive algorithm and artificial neural networks. Evol. Intel. 17(3), 1437–1461 (2024). https://doi.org/10.1007/s12065-023-00838-y

    Article  Google Scholar 

  9. Douiri, M.R., Cherkaoui, M., Douiri, S.M.: Rotor resistance and speed identification using extended Kalman filter and fuzzy logic controller for induction machine drive. In: Proceedings of International Conference on Multimedia Computing and Systems, ICMCS 2012, art. no. 6320298, pp. 1182–1187, (2012), https://doi.org/10.1109/ICMCS.2012.6320298

  10. Ndiaye, E.H.M., Ndiaye, A., Faye, M., Lefebvre, G., Tankari, M.A.: Adaptive neuro-fuzzy inference system and genetic algorithm (NFGA)-based MPPT controller for PV system: experimental realization. In: Power Electronics Converters and their Control for Renewable Energy Applications. (2023). https://doi.org/10.1016/B978-0-323-91941-8.00012-3

    Chapter  Google Scholar 

  11. Bhagat, V.K., Paul, K., Dutta, R., Sinha, P., Debnath, M.K.: Performance analysis of FLC & ANN based MPPT controller for solar PV system. In: 2nd Odisha International Conference on Electrical Power Engineering, Communication and Computing T`echnology, ODICON (2022), https://doi.org/10.1109/ODICON54453.2022.10010176

  12. Muniyandi, V., Manimaran, S., Balasubramanian, A.K.: Improving the Power output of a partially shaded photovoltaic array through a hybrid magic square configuration with differential evolution-based adaptive P&O MPPT method. J. Sol. Energy Eng., Trans. ASME (2023). https://doi.org/10.1115/1.4056621

    Article  Google Scholar 

  13. Ahmed, J., Salam, Z.: A maximum power point tracking (mppt) for PV system using cuckoo search with partial shading capability. Appl. Energy 119, 118–130 (2014). https://doi.org/10.1016/j.apenergy.2013.12.062

    Article  Google Scholar 

  14. Gonzalez-Castano, C., Restrepo, C., Kouro, S., Rodriguez, J.: MPPT algorithm based on artificial bee colony for PV system. IEEE Access (2021). https://doi.org/10.1109/ACCESS.2021.3066281

    Article  Google Scholar 

  15. Chermite, C., Rachid Douiri, M.: Hybrid tiki taka and mean differential evolution based Weibull distribution: a comprehensive approach for solar PV modules parameter extraction with Newton-Raphson optimization. Energy Convers. Manag. (2024). https://doi.org/10.1016/j.enconman.2024.118705

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moulay Rachid Douiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Douiri, M.R., Chermite, C. (2025). Optimal Fuzzy-Genetic Self-tuning for Tracking Photovoltaic Peak Power. In: Martínez-Villaseñor, L., Ochoa-Ruiz, G. (eds) Advances in Soft Computing. MICAI 2024. Lecture Notes in Computer Science(), vol 15247. Springer, Cham. https://doi.org/10.1007/978-3-031-75543-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75543-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75542-2

  • Online ISBN: 978-3-031-75543-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics