Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Conditional Importance Resampling for an Enhanced Sequential Monte Carlo Sampler

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14990))

Included in the following conference series:

  • 190 Accesses

Abstract

Sequential Monte Carlo (SMC) samplers are a family of powerful Bayesian inference methods that combine sampling and resampling to sample from challenging posterior distributions. This makes SMC widely used in several application domains of statistics and Machine Learning. The aim of this paper is to introduce a new resampling framework, called Conditional Importance Resampling (CIR) that reduces the quantization error arising in the application of traditional resampling schemes. To assess the impact of this approach, we conduct a comparative study between two SMC samplers, differing solely in their resampling schemes: one utilizing systematic resampling and the other employing CIR. The overall improvement is demonstrated by theoretical results and numerical experiments for sampling a forest of Bayesian Decision Trees, focusing on its application in classification and regression tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://archive.ics.uci.edu/.

References

  1. Arulampalam, M.S., Maskell, S., Gordon, N.J., Clapp, T.: A tutorial on particle filters for online nonlinear/non-gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)

    Article  MATH  Google Scholar 

  2. Bacak, A., Hocaoğlu, A.K.: A novel resampling algorithm based on the knapsack problem. Signal Process. 170, 107436 (2020). https://doi.org/10.1016/j.sigpro.2019.107436

    Article  MATH  Google Scholar 

  3. Doucet, A., Smith, A., de Freitas, N., Gordon, N.J.: Sequential Monte Carlo Methods in Practice. Information Science and Statistics. Springer, New York (2001)

    Google Scholar 

  4. Drousiotis, E., Varsi, A., Spirakis, P.G., Maskell, S.: A shared memory SMC sampler for decision trees. In: 2023 IEEE 35th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD), pp. 209–218 (2023). https://doi.org/10.1109/SBAC-PAD59825.2023.00030

  5. Gordon, N.J., Salmond, D.J., Smith, A.: Novel approach to nonlinear/non-gaussian Bayesian state estimation. IEE Proc. F Radar Signal Process. UK 140(2), 107 (1993)

    Google Scholar 

  6. Green, P.L., Maskell, S.: Parameter estimation from big data using a sequential Monte Carlo sampler. In: Proceedings of ISMA2016 International Conference on Noise and Vibration Engineering and USD2016 International Conference on Uncertainty in Structural Dynamics, pp. 4111–4119 (2016)

    Google Scholar 

  7. Hol, J.D., Schon, T.B., Gustafsson, F.: On resampling algorithms for particle filters. In: 2006 IEEE Nonlinear Statistical Signal Processing Workshop, pp. 79–82 (2006)

    Google Scholar 

  8. Kitagawa, G.: Monte Carlo filter and smoother for non-gaussian nonlinear state space models. J. Comput. Graph. Stat. 5(1), 1–25 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kuptametee, C., Aunsri, N.: A review of resampling techniques in particle filtering framework. Measurement 193, 110836 (2022). https://doi.org/10.1016/j.measurement.2022.110836

    Article  MATH  Google Scholar 

  10. Li, T., Bolic, M., Djuric, P.M.: Resampling methods for particle filtering: classification, implementation, and strategies. IEEE Signal Process. Mag. 32(3), 70–86 (2015). https://doi.org/10.1109/MSP.2014.2330626

    Article  MATH  Google Scholar 

  11. Li, T., Sattar, T.P., Sun, S.: Deterministic resampling: unbiased sampling to avoid sample impoverishment in particle filters. Signal Process. 92(7), 1637–1645 (2012). https://doi.org/10.1016/j.sigpro.2011.12.019

    Article  MATH  Google Scholar 

  12. Liu, J.S., Chen, R.: Sequential Monte Carlo methods for dynamic systems. J. Am. Stat. Assoc. 93(443), 1032–1044 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lopez, F., Zhang, L., Beaman, J., Mok, A.: Implementation of a particle filter on a GPU for nonlinear estimation in a manufacturing remelting process. In: 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 340–345 (2014). https://doi.org/10.1109/AIM.2014.6878102

  14. Lopez, F., Zhang, L., Mok, A., Beaman, J.: Particle filtering on GPU architectures for manufacturing applications. Comput. Ind. 71, 116–127 (2015). https://doi.org/10.1016/j.compind.2015.03.013

    Article  MATH  Google Scholar 

  15. Ma, X., Karkus, P., Hsu, D., Lee, W.S.: Particle filter recurrent neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5101–5108 (2020)

    Google Scholar 

  16. Mihaylova, L., Carmi, A.Y., Septier, F., Gning, A., Pang, S.K., Godsill, S.: Overview of Bayesian sequential Monte Carlo methods for group and extended object tracking. Digital Signal Process. 25, 1–16 (2014)

    Article  MATH  Google Scholar 

  17. Moral, P.D., Doucet, A., Jasra, A.: Sequential Monte Carlo samplers. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 68(3), 411–436 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Murray, L.M., Lee, A., Jacob, P.E.: Parallel resampling in the particle filter. J. Comput. Graph. Stat. 25(3), 789–805 (2016). https://doi.org/10.1080/10618600.2015.1062015

    Article  MathSciNet  MATH  Google Scholar 

  19. Radojević, M., Meijering, E.: Automated neuron reconstruction from 3D fluorescence microscopy images using sequential Monte Carlo estimation. Neuroinformatics 17(3), 423–442 (2019)

    Article  MATH  Google Scholar 

  20. Rosato, C., Varsi, A., Murphy, J., Maskell, S.: An O(log2N) SMC2 algorithm on distributed memory with an approx. optimal l-kernel. In: 2023 IEEE Symposium Sensor Data Fusion and International Conference on Multisensor Fusion and Integration (SDF-MFI), pp. 1–8 (2023). https://doi.org/10.1109/SDF-MFI59545.2023.10361452

  21. Svensson, A., Dahlin, J., Schön, T.B.: 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 477–480 (2015). https://doi.org/10.1109/CAMSAP.2015.7383840

  22. Varsi, A., Kekempanos, L., Thiyagalingam, J., Maskell, S.: Parallelising particle filters with deterministic runtime on distributed memory systems. In: IET 3rd International Conference on Intelligent Signal Processing (ISP 2017), pp. 1–10 (2017). https://doi.org/10.1049/cp.2017.0357

  23. Varsi, A., Maskell, S., Spirakis, P.G.: An O(log2N) fully-balanced resampling algorithm for particle filters on distributed memory architectures. Algorithms 14(12), 342–362 (2021)

    Article  MATH  Google Scholar 

  24. Varsi, A., Taylor, J., Kekempanos, L., Knapp, E.P., Maskell, S.: A fast parallel particle filter for shared memory systems. IEEE Signal Process. Lett. 27, 1570–1574 (2020). https://doi.org/10.1109/LSP.2020.3014035

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soodeh Habibi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Habibi, S., Drousiotis, E., Varsi, A., Maskell, S., Moore, R., Spirakis, P.G. (2025). Conditional Importance Resampling for an Enhanced Sequential Monte Carlo Sampler. In: Festa, P., Ferone, D., Pastore, T., Pisacane, O. (eds) Learning and Intelligent Optimization. LION 2024. Lecture Notes in Computer Science, vol 14990. Springer, Cham. https://doi.org/10.1007/978-3-031-75623-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75623-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75622-1

  • Online ISBN: 978-3-031-75623-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics