Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robust Multiparty Computation from Threshold Encryption Based on RLWE

  • Conference paper
  • First Online:
Information Security (ISC 2024)

Abstract

We consider protocols for secure multi-party computation (MPC) built from \(\textsf{FHE} \) under honest majority, i.e., for \(n =2t+1\) players of which t are corrupt, that are robust. Surprisingly there exists no robust threshold \(\textsf{FHE} \) scheme based on \(\textsf{BFV} \) to design such MPC protocols. Precisely, all existing methods for generating a common relinearization key can abort as soon as one player deviates. We address this issue, with a new relinearization key (adapted from [CDKS19, CCS’19]) which we show how to securely generate in parallel of the threshold encryption key, in the same broadcast. We thus obtain the first robust threshold \(\textsf{BFV} \) scheme, moreover using only one broadcast for the generation of keys instead of two previously.

Of independent interest, as an optional alternative, we propose the first threshold \(\textsf{FHE} \) decryption enabling simultaneously: (i) robustness over asynchronous channels with honest majority; (ii) tolerating a power-of-small-prime ciphertext modulus, e.g., \(2^e\); and (iii) secret shares of sizes quasi-independent of \(n \).

A. Urban—Supported by the Beyond5G project.

M. Rambaud—Supported by the French ANR Project ANR-21-CE39-0009-BARRACUDA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    With whom we do not compare ourselves since they do not generate a \(\textbf{rlk} \) key.

  2. 2.

    Where \({\overline{m_i}}\) denotes the label of variable \(m_i\).

  3. 3.

    The terminology verifiable, is because when compiling to fully malicious security, it should be appended NIZKs of knowledge of plaintexts and of a degree t polynomial. State of the art implementations of \(\textsf{PVSS} \) can be found in [20].

  4. 4.

    Where \(\textsf{c} _1 \otimes \textsf{c} _2 = (\textsf{c} _1[0] \cdot \textsf{c} _2[0], \textsf{c} _1[0] \cdot \textsf{c} _2[1] \!+ \!\textsf{c} _1[1] \cdot \textsf{c} _2[0] , \textsf{c} _1[1] \cdot \textsf{c} _2[1])\).

References

  1. Abspoel, M., Cramer, R., Damgård, I., Escudero, D., Yuan, C.: Efficient information-theoretic secure multiparty computation over \(\mathbb{z}/p^k \mathbb{z}\) via galois rings. In: TCC (2019)

    Google Scholar 

  2. Albrecht, M., et al.: Homomorphic Encryption Standard (2021)

    Google Scholar 

  3. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: EUROCRYPT (2012)

    Google Scholar 

  4. Boneh, D., et al.: Threshold cryptosystems from threshold fully homomorphic encryption. In: CRYPTO (2018)

    Google Scholar 

  5. Boudgoust, K., Scholl, P.: Simple threshold (fully homomorphic) encryption from LWE with polynomial modulus. In: ASIACRYPT (2023)

    Google Scholar 

  6. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology – CRYPTO (2012)

    Google Scholar 

  7. Braun, L., Damgård, I., Orlandi, C.: Secure multiparty computation from threshold encryption based on class groups. In: CRYPTO (2023)

    Google Scholar 

  8. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: FOCS (2001). We refer to eprint 2000/067

    Google Scholar 

  9. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient multi-key homomorphic encryption with packed ciphertexts with application to oblivious neural network inference. In: CCS (2019)

    Google Scholar 

  10. Chen, H., Han, K.: Homomorphic lower digits removal and improved FHE bootstrapping. In: EUROCRYPT (2018)

    Google Scholar 

  11. Cheon, J.H., Cho, W., Kim, J.: Improved universal thresholdizer from threshold fully homomorphic encryption. ePrint 2023/545 (2023)

    Google Scholar 

  12. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: ASIACRYPT (2017)

    Google Scholar 

  13. Chowdhury, S., et al.: Efficient threshold FHE with application to real-time systems. ePrint 2022/1625 (2022)

    Google Scholar 

  14. Coretti, S., Garay, J., Hirt, M., Zikas, V.: Constant-round asynchronous multi-party computation based on one-way functions. In: ASIACRYPT (2016)

    Google Scholar 

  15. Dov Gordon, S., Liu, F.H., Shi, E.: Constant-round MPC with fairness and guarantee of output delivery. In: CRYPTO (2015)

    Google Scholar 

  16. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR ePrint (2012)

    Google Scholar 

  17. Fehr, S.: Span programs over rings and how to share a secret from a module. Master’s thesis, ETH Zurich (1998)

    Google Scholar 

  18. Fouque, P.A., Stern, J.: One round threshold discrete-log key generation without private channels. In: PKC (2001)

    Google Scholar 

  19. Geelen, R., Iliashenko, I., Kang, J., Vercauteren, F.: On polynomial functions modulo \(p^e\) and faster bootstrapping for homomorphic encryption. In: EUROCRYPT (2023)

    Google Scholar 

  20. Gentry, C., Halevi, S., Vadim, L.: Practical non-interactive publicly verifiable secret sharing with thousands of parties. In: EUROCRYPT (2022)

    Google Scholar 

  21. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: CRYPTO (2013)

    Google Scholar 

  22. Jain, A., Rasmussen, P.M.R., Sahai, A.: Threshold fully homomorphic encryption. ePrint 2017/257 (2017)

    Google Scholar 

  23. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous computation. In: TCC (2011)

    Google Scholar 

  24. Kim, E., Jeong, J., Yoon, H., Kim, Y., Cho, J., Cheon, J.H.: How to securely collaborate on data: decentralized threshold he and secure key update. IEEE Access 8, 191319–191329 (2020)

    Article  Google Scholar 

  25. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. J. ACM 60(6), 1–35 (2013)

    Article  MathSciNet  Google Scholar 

  26. Mouchet, C., Troncoso-Pastoriza, J., Bossuat, J.P., Hubaux, J.P.: Multiparty homomorphic encryption from ring-learning-with-errors. PoPETS 2021(4), 291–311 (2021)

    Article  Google Scholar 

  27. Park, J.: Homomorphic encryption for multiple users with less communications. IEEE Access 9, 135915–135926 (2021)

    Article  Google Scholar 

  28. Shamir, A.: How to share a secret. Commun. ACM (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Urban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Urban, A., Rambaud, M. (2025). Robust Multiparty Computation from Threshold Encryption Based on RLWE. In: Mouha, N., Nikiforakis, N. (eds) Information Security. ISC 2024. Lecture Notes in Computer Science, vol 15257. Springer, Cham. https://doi.org/10.1007/978-3-031-75757-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75757-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75756-3

  • Online ISBN: 978-3-031-75757-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics