Abstract
Syndrome decoding problem (SDP) is the security assumption of the code-based cryptography. Three out of the four NIST-PQC round 4 candidates are code-based cryptography. Information set decoding (ISD) is known for the fastest existing algorithm to solve SDP instances with relatively high code rate. Security of code-based cryptography is often constructed on the asymptotic complexity of the ISD algorithm. However, the concrete complexity of the ISD algorithm has hardly ever been known. Recently, Esser, May and Zweydinger (Eurocrypt ’22) provided the first implementation of the representation-based ISD, such as May–Meurer–Thomae (MMT) or Becker–Joux–May–Meurer (BJMM) algorithm and solved the McEliece-1284 instance in the decoding challenge, revealing the practical efficiency of these ISDs.
In this work, we propose a practically fast depth-2 BJMM algorithm and provide the first publicly available GPU implementation. We solve the McEliece-1409 instance for the first time and present concrete analysis for the record. Cryptanalysis for NIST-PQC round 4 code-based candidates against the improved BJMM algorithm is also conducted. Our results provide both theoretical and practical evidence for the reliability of code-based NIST-PQC round 4 candidates.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
The reference implementation for cuMMT is available at https://www.jstage.jst.go.jp/article/transfun/E106.A/3/E106.A_2022CIP0023/_pdf/.
- 4.
Available at https://github.com/FloydZ/cryptanalysislib.
- 5.
https://isd.mceliece.org/1347.html, published on February 26, 2023.
- 6.
Tested on commit efc133e. We chose the parameters that minimize runtime.
- 7.
We used \(\texttt {openssl speed -evp aes-}n \texttt {-cbc -bytes }b\texttt { -multi 32 -seconds 60}\) for AES-n. The blocklength is set to \(b = 16\) for AES-128 and \(b = 32\) otherwise.
References
Albrecht, M., Bard, G.: The M4RI library. The M4RI Team (2023). https://bitbucket.org/malb/m4ri
Albrecht, M.R., et al.: Classic McEliece: conservative code-based cryptography (2022)
Aragon, N., et al.: BIKE: bit flipping key encapsulation (2022)
Aragon, N., Lavauzelle, J., Lequesne, M.: decodingchallenge.org (2019). http://decodingchallenge.org
Azarderakhsh, R., et al.: Supersingular isogeny key encapsulation. Submission NIST Post-Quantum Stand. Proj. 152, 154–155 (2017)
Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes in \(2^{n/20}\): how \(1+ 1= 0\) improves information set decoding. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_31
Berlekamp, E., McEliece, R., Van Tilborg, H.: On the inherent intractability of certain coding problems (corresp.). IEEE Trans. Inf. Theory 24(3), 384–386 (1978)
Bernstein, D.J., Chou, T.: CryptAttackTester: high-assurance attack analysis. In: CRYPTO 2024 (2024, to appear). https://eprint.iacr.org/2023/940
Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryptosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 31–46. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88403-3_3
Both, L., May, A.: Decoding linear codes with high error rate and its impact for LPN security. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 25–46. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_2
Canto Torres, R., Sendrier, N.: Analysis of information set decoding for a sub-linear error weight. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 144–161. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8_10
Castryck, W., Decru, T.: An efficient key recovery attack on SIDH. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part V. LNCS, vol. 14008, pp. 423–447. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-30589-4_15
Dumer, I.: On minimum distance decoding of linear codes. In: Proceedings of the 5th Joint Soviet-Swedish International Workshop Information Theory, pp. 50–52 (1991)
Esser, A., Bellini, E.: Syndrome decoding estimator. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022. LNCS, vol. 13177, pp. 112–141. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97121-2_5
Esser, A., May, A., Zweydinger, F.: McEliece needs a break - solving McEliece-1284 and quasi-cyclic-2918 with modern ISD. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol. 13277, pp. 433–457. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07082-2_16
Esser, A., Verbel, J., Zweydinger, F., Bellini, E.: CryptographicEstimators: a software library for cryptographic hardness estimation. Cryptology ePrint Archive, Paper 2023/589 (2023). https://eprint.iacr.org/2023/589
Esser, A., Zweydinger, F.: New time-memory trade-offs for subset sum - improving ISD in theory and practice. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023. LNCS, vol. 14008, pp. 360–390. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30589-4_13
Guo, Q., Johansson, T., Nguyen, V.: A new sieving-style information-set decoding algorithm. Cryptology ePrint Archive, Paper 2023/247 (2023). https://eprint.iacr.org/2023/247
Hamdaoui, Y., Sendrier, N.: A non asymptotic analysis of information set decoding. IACR Cryptol. ePrint Arch. 2013, 162 (2013). https://api.semanticscholar.org/CorpusID:17721683
Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pp. 604–613 (1998)
May, A., Meurer, A., Thomae, E.: Decoding random linear codes in \(\tilde{\cal{O}}(2^{0.054n})\). In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_6
May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding of binary linear codes. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 203–228. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_9
McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Deep Space Netw. Progr. Rep. 44, 114–116 (1978)
Melchor, C.A., et al.: Hamming quasi-cyclic (HQC). NIST PQC Round 2(4), 13 (2018)
Narisada, S., Fukushima, K., Kiyomoto, S.: Multiparallel MMT: faster ISD algorithm solving high-dimensional syndrome decoding problem. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E106.A(3), 241–252 (2023). https://doi.org/10.1587/transfun.2022CIP0023
Narisada, S., Uemura, S., Okada, H., Furue, H., Aikawa, Y., Fukushima, K.: Solving McEliece-1409 in one day—cryptanalysis with the improved BJMM algorithm. Cryptology ePrint Archive, Paper 2024/393 (2024). https://eprint.iacr.org/2024/393
Peters, C.: Information-set decoding for linear codes over \({\rm F}_{\rm q}\). In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 81–94. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12929-2_7
Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf. Theory 8(5), 5–9 (1962)
Sendrier, N.: Decoding one out of many. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 51–67. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_4
Stern, J.: A method for finding codewords of small weight. In: Cohen, G., Wolfmann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Heidelberg (1989). https://doi.org/10.1007/BFb0019850
Stevens, M.: MCCL, modular code cryptanalysis library (2024). https://github.com/codecryptanalysis/mccl
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Narisada, S., Uemura, S., Okada, H., Furue, H., Aikawa, Y., Fukushima, K. (2025). Solving McEliece-1409 in One Day—Cryptanalysis with the Improved BJMM Algorithm. In: Mouha, N., Nikiforakis, N. (eds) Information Security. ISC 2024. Lecture Notes in Computer Science, vol 15258. Springer, Cham. https://doi.org/10.1007/978-3-031-75764-8_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-75764-8_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-75763-1
Online ISBN: 978-3-031-75764-8
eBook Packages: Computer ScienceComputer Science (R0)